These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16348747)

  • 1. Starvation Response of the Marine Barophile CNPT-3.
    Rice SA; Oliver JD
    Appl Environ Microbiol; 1992 Aug; 58(8):2432-7. PubMed ID: 16348747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium.
    Moyer CL; Morita RY
    Appl Environ Microbiol; 1989 May; 55(5):1122-7. PubMed ID: 16347905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starvation-induced thermal tolerance as a survival mechanism in a psychrophilic marine bacterium.
    Preyer JM; Oliver JD
    Appl Environ Microbiol; 1993 Aug; 59(8):2653-6. PubMed ID: 16349020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Composition of a Psychrophilic Marine Vibrio sp. During Starvation-Induced Morphogenesis.
    Oliver JD; Stringer WF
    Appl Environ Microbiol; 1984 Mar; 47(3):461-6. PubMed ID: 16346485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Ester-Linked Phospholipid Fatty Acid Profiles of Subsurface Bacteria during Starvation and Desiccation in a Porous Medium.
    Kieft TL; Ringelberg DB; White DC
    Appl Environ Microbiol; 1994 Sep; 60(9):3292-9. PubMed ID: 16349382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the glucose transport system in some deep-sea bacteria.
    Delong EF; Yayanos AA
    Appl Environ Microbiol; 1987 Mar; 53(3):527-32. PubMed ID: 16347302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus.
    Canganella F; Gonzalez JM; Yanagibayashi M; Kato C; Horikoshi K
    Arch Microbiol; 1997 Jul; 168(1):1-7. PubMed ID: 9211707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation.
    Novitsky JA; Morita RY
    Appl Environ Microbiol; 1977 Mar; 33(3):635-41. PubMed ID: 16345219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starvation-survival processes of a marine Vibrio.
    Amy PS; Pauling C; Morita RY
    Appl Environ Microbiol; 1983 Mar; 45(3):1041-8. PubMed ID: 16346228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium.
    Moyer CL; Morita RY
    Appl Environ Microbiol; 1989 Oct; 55(10):2710-6. PubMed ID: 16348037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of starvation on lipid peroxidation and fatty acid composition in the blood of young and old rats].
    Gatsko GG; Mazhul' LM; Zhukova AS; Bylinskiĭ OA
    Vopr Med Khim; 1984; 30(2):44-7. PubMed ID: 6740994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758.
    Wang Y; Delettre J; Corrieu G; Béal C
    Biotechnol Prog; 2011; 27(2):342-50. PubMed ID: 21360838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of exopolymers on cell morphology and culturability of Leuconostoc mesenteroides during starvation.
    Kim DS; Fogler HS
    Appl Microbiol Biotechnol; 1999 Nov; 52(6):839-44. PubMed ID: 10616718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid and fatty acid composition of brush border membrane of rat intestine during starvation.
    Waheed AA; Yasuzumi F; Gupta PD
    Lipids; 1998 Nov; 33(11):1093-7. PubMed ID: 9870904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and starvation periods.
    Naz M
    Fish Physiol Biochem; 2008 Dec; 34(4):391-404. PubMed ID: 18958597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio.
    Novitsky JA; Morita RY
    Appl Environ Microbiol; 1976 Oct; 32(4):617-22. PubMed ID: 984833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminescence-based detection of activity of starved and viable but nonculturable bacteria.
    Duncan S; Glover LA; Killham K; Prosser JI
    Appl Environ Microbiol; 1994 Apr; 60(4):1308-16. PubMed ID: 8017919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and transcriptome of the polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LH128 after long-term starvation.
    Fida TT; Moreno-Forero SK; Heipieper HJ; Springael D
    Microbiology (Reading); 2013 Sep; 159(Pt 9):1807-1817. PubMed ID: 23861307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids.
    Guckert JB; Hood MA; White DC
    Appl Environ Microbiol; 1986 Oct; 52(4):794-801. PubMed ID: 3777927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria.
    Gong L; Takayama K; Kjelleberg S
    Microbiology (Reading); 2002 Feb; 148(Pt 2):559-570. PubMed ID: 11832519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.