These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16348808)

  • 1. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: field applications.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3647-53. PubMed ID: 16348808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3638-46. PubMed ID: 16348807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion.
    McDonough RJ; Sanders RW; Porter KG; Kirchman DL
    Appl Environ Microbiol; 1986 Nov; 52(5):992-1000. PubMed ID: 16347229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.
    Servais P
    Microb Ecol; 1995 Mar; 29(2):115-28. PubMed ID: 24186718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of diel rates of bacterial secondary production in aquatic environments.
    Riemann B; Søndergaard M
    Appl Environ Microbiol; 1984 Apr; 47(4):632-8. PubMed ID: 16346505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial secondary production in freshwater measured by(3)H-thymidine incorporation method.
    Riemann B; Fuhrman J; Azam F
    Microb Ecol; 1982 Oct; 8(2):101-13. PubMed ID: 24225805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements.
    Pérez MT; Hörtnagl P; Sommaruga R
    Environ Microbiol; 2010 Jan; 12(1):74-82. PubMed ID: 19725866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of toxic substances on natural bacterial assemblages determined by means of [h]thymidine incorporation.
    Riemann B; Lindgaard-Jørgensen P
    Appl Environ Microbiol; 1990 Jan; 56(1):75-80. PubMed ID: 16348108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine.
    Chin-Leo G; Kirchman DL
    Appl Environ Microbiol; 1988 Aug; 54(8):1934-9. PubMed ID: 16347706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton.
    Sommaruga R; Obernosterer I; Herndl GJ; Psenner R
    Appl Environ Microbiol; 1997 Nov; 63(11):4178-84. PubMed ID: 16535724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters.
    Bastviken D; Tranvik L
    Appl Environ Microbiol; 2001 Jul; 67(7):2916-21. PubMed ID: 11425702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial production in a mesohumic lake estimated from [(14)C]leucine incorporation rate.
    Tulonen T
    Microb Ecol; 1993 Nov; 26(3):201-17. PubMed ID: 24190090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protozoan grazing and bacterial production in stratified lake vechten estimated with fluorescently labeled bacteria and by thymidine incorporation.
    Bloem J; Ellenbroek FM; Bär-Gilissen MJ; Cappenberg TE
    Appl Environ Microbiol; 1989 Jul; 55(7):1787-95. PubMed ID: 16347972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples.
    Buesing N; Gessner MO
    Microb Ecol; 2003 Mar; 45(3):291-301. PubMed ID: 12658525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal bacterial production in a dimictic lake as measured by increases in cell numbers and thymidine incorporation.
    Lovell CR; Konopka A
    Appl Environ Microbiol; 1985 Mar; 49(3):492-500. PubMed ID: 16346743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thymidine and leucine incorporation in soil bacteria with different cell size.
    Bååth E
    Microb Ecol; 1994 May; 27(3):267-78. PubMed ID: 24190340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a flooding dose of leucine in stimulating incorporation of constantly infused valine into albumin.
    Smith K; Downie S; Barua JM; Watt PW; Scrimgeour CM; Rennie MJ
    Am J Physiol; 1994 Apr; 266(4 Pt 1):E640-4. PubMed ID: 8178985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Bacterioplankton Production by Measuring [H]thymidine Incorporation in a Eutrophic Swedish Lake.
    Bell RT; Ahlgren GM; Ahlgren I
    Appl Environ Microbiol; 1983 Jun; 45(6):1709-21. PubMed ID: 16346304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte.
    Miranda MR; Guimarães JR; Coelho-Souza AS
    J Microbiol Methods; 2007 Oct; 71(1):23-31. PubMed ID: 17765986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of cell production from [h]thymidine incorporation with freshwater bacteria.
    Smits JD; Riemann B
    Appl Environ Microbiol; 1988 Sep; 54(9):2213-9. PubMed ID: 16347733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.