These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 16348864)
1. A strategy for rotation of different bacteriophage defenses in a lactococcal single-strain starter culture system. Sing WD; Klaenhammer TR Appl Environ Microbiol; 1993 Feb; 59(2):365-72. PubMed ID: 16348864 [TBL] [Abstract][Full Text] [Related]
2. A Starter Culture Rotation Strategy Incorporating Paired Restriction/ Modification and Abortive Infection Bacteriophage Defenses in a Single Lactococcus lactis Strain. Durmaz E; Klaenhammer TR Appl Environ Microbiol; 1995 Apr; 61(4):1266-73. PubMed ID: 16534987 [TBL] [Abstract][Full Text] [Related]
3. Molecular Characterization of Three Small Isometric-Headed Bacteriophages Which Vary in Their Sensitivity to the Lactococcal Phage Resistance Plasmid pTR2030. Alatossava T; Klaenhammer TR Appl Environ Microbiol; 1991 May; 57(5):1346-53. PubMed ID: 16348479 [TBL] [Abstract][Full Text] [Related]
4. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. Hill C; Miller LA; Klaenhammer TR J Bacteriol; 1991 Jul; 173(14):4363-70. PubMed ID: 1906061 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterization of a second abortive phage resistance gene present in Lactococcus lactis subsp. lactis ME2. Durmaz E; Higgins DL; Klaenhammer TR J Bacteriol; 1992 Nov; 174(22):7463-9. PubMed ID: 1429469 [TBL] [Abstract][Full Text] [Related]
6. The contribution of abortive infection to preventing populations of Lactococcus lactis from succumbing to infections with bacteriophage. Rodríguez-Román E; Manuel JA; Goldberg D; Levin BR PLoS One; 2024; 19(4):e0298680. PubMed ID: 38557757 [TBL] [Abstract][Full Text] [Related]
7. Design of a phage-insensitive lactococcal dairy starter via sequential transfer of naturally occurring conjugative plasmids. O'Sullivan D; Coffey A; Fitzgerald GF; Hill C; Ross RP Appl Environ Microbiol; 1998 Nov; 64(11):4618-22. PubMed ID: 9797334 [TBL] [Abstract][Full Text] [Related]
8. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. Klaenhammer TR; Sanozky RB J Gen Microbiol; 1985 Jun; 131(6):1531-41. PubMed ID: 3930657 [TBL] [Abstract][Full Text] [Related]
9. Conjugal Transfer of Bacteriophage Resistance Determinants on pTR2030 into Streptococcus cremoris Strains. Sing WD; Klaenhammer TR Appl Environ Microbiol; 1986 Jun; 51(6):1264-71. PubMed ID: 16347085 [TBL] [Abstract][Full Text] [Related]
10. Streptococcus cremoris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Steenson LR; Klaenhammer TR Appl Environ Microbiol; 1985 Oct; 50(4):851-8. PubMed ID: 3002270 [TBL] [Abstract][Full Text] [Related]
11. Application and evaluation of the phage resistance- and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. Coakley M; Fitzgerald G; Ros RP Appl Environ Microbiol; 1997 Apr; 63(4):1434-40. PubMed ID: 9097441 [TBL] [Abstract][Full Text] [Related]
12. Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures. Muhammed MK; Kot W; Neve H; Mahony J; Castro-Mejía JL; Krych L; Hansen LH; Nielsen DS; Sørensen SJ; Heller KJ; van Sinderen D; Vogensen FK Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754704 [TBL] [Abstract][Full Text] [Related]
13. Characterization of closely related lactococcal starter strains which show differing patterns of bacteriophage sensitivity. Ward LJ; Heap HA; Kelly WJ J Appl Microbiol; 2004; 96(1):144-8. PubMed ID: 14678167 [TBL] [Abstract][Full Text] [Related]
14. Localization of Separate Genetic Loci for Reduced Sensitivity towards Small Isometric-Headed Bacteriophage sk1 and Prolate-Headed Bacteriophage c2 on pGBK17 from Lactococcus lactis subsp. lactis KR2. McKay LL; Bohanon MJ; Polzin KM; Rule PL; Baldwin KA Appl Environ Microbiol; 1989 Oct; 55(10):2702-9. PubMed ID: 16348036 [TBL] [Abstract][Full Text] [Related]
15. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. Romero DA; Magill D; Millen A; Horvath P; Fremaux C FEMS Microbiol Rev; 2020 Nov; 44(6):909-932. PubMed ID: 33016324 [TBL] [Abstract][Full Text] [Related]
16. Localization, cloning, and expression of genetic determinants for bacteriophage resistance (Hsp) from the conjugative plasmid pTR2030. Hill C; Romero DA; McKenney DS; Finer KR; Klaenhammer TR Appl Environ Microbiol; 1989 Jul; 55(7):1684-9. PubMed ID: 2504114 [TBL] [Abstract][Full Text] [Related]
17. A Specific Sugar Moiety in the Lactococcus lactis Cell Wall Pellicle Is Required for Infection by CHPC971, a Member of the Rare 1706 Phage Species. Marcelli B; de Jong A; Karsens H; Janzen T; Kok J; Kuipers OP Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31350317 [No Abstract] [Full Text] [Related]
18. The bacteriophage resistance plasmid pTR2030 forms high-molecular-weight multimers in lactococci. Hill C; Miller LA; Klaenhammer TR Plasmid; 1991 Mar; 25(2):105-12. PubMed ID: 1857750 [TBL] [Abstract][Full Text] [Related]
19. The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Hill C; Pierce K; Klaenhammer TR Appl Environ Microbiol; 1989 Sep; 55(9):2416-9. PubMed ID: 2508558 [TBL] [Abstract][Full Text] [Related]
20. Improvement of phage defence in Lactococcus lactis by introduction of the plasmid encoded restriction and modification system LlaAI. Gabs S; Josephsen J Lett Appl Microbiol; 2003; 36(5):332-6. PubMed ID: 12680948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]