These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 16348884)
21. Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore. Maunsell B; Adams C; O'Gara F Microbiology (Reading); 2006 Jan; 152(Pt 1):29-42. PubMed ID: 16385113 [TBL] [Abstract][Full Text] [Related]
22. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB-dependent Escherichia coli receptors and specificity of the protein. Bitter W; Marugg JD; de Weger LA; Tommassen J; Weisbeek PJ Mol Microbiol; 1991 Mar; 5(3):647-55. PubMed ID: 1646376 [TBL] [Abstract][Full Text] [Related]
23. Nucleotide sequence analysis and potential environmental distribution of a ferric pseudobactin receptor gene of Pseudomonas sp. strain M114. Morris J; Donnelly DF; O'Neill E; McConnell F; O'Gara F Mol Gen Genet; 1994 Jan; 242(1):9-16. PubMed ID: 8277948 [TBL] [Abstract][Full Text] [Related]
24. Antagonistic Effect of Nonpathogenic Fusarium oxysporum Fo47 and Pseudobactin 358 upon Pathogenic Fusarium oxysporum f. sp. dianthi. Lemanceau P; Bakker PA; De Kogel WJ; Alabouvette C; Schippers B Appl Environ Microbiol; 1993 Jan; 59(1):74-82. PubMed ID: 16348860 [TBL] [Abstract][Full Text] [Related]
25. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Meziane H; VAN DER Sluis I; VAN Loon LC; Höfte M; Bakker PA Mol Plant Pathol; 2005 Mar; 6(2):177-85. PubMed ID: 20565648 [TBL] [Abstract][Full Text] [Related]
26. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Venturi V; Ottevanger C; Bracke M; Weisbeek P Mol Microbiol; 1995 Mar; 15(6):1081-93. PubMed ID: 7623664 [TBL] [Abstract][Full Text] [Related]
28. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
29. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Rizvi A; Khan MS Chemosphere; 2017 Oct; 185():942-952. PubMed ID: 28747006 [TBL] [Abstract][Full Text] [Related]
30. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
31. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Venturi V; Ottevanger C; Leong J; Weisbeek PJ Mol Microbiol; 1993 Oct; 10(1):63-73. PubMed ID: 7968519 [TBL] [Abstract][Full Text] [Related]
32. Infection of clover by plant growth promoting Pseudomonas fluorescens strain 267 and Rhizobium leguminosarum bv. trifolii studied by mTn5-gusA. Marek-Kozaczuk M; Kopcińska J; Lotocka B; Golinowski W; Skorupska A Antonie Van Leeuwenhoek; 2000 Jul; 78(1):1-11. PubMed ID: 11016690 [TBL] [Abstract][Full Text] [Related]
33. Structures and characteristics of novel siderophores from plant deleterious Pseudomonas fluorescens A225 and Pseudomonas putida ATCC 39167. Khalil-Rizvi S; Toth SI; van der Helm D; Vidavsky I; Gross ML Biochemistry; 1997 Apr; 36(14):4163-71. PubMed ID: 9100010 [TBL] [Abstract][Full Text] [Related]
34. Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria. Johansen JE; Binnerup SJ; Lejbølle KB; Mascher F; Sørensen J; Keel C J Appl Microbiol; 2002; 93(6):1065-74. PubMed ID: 12452964 [TBL] [Abstract][Full Text] [Related]
35. Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil. Inal A; Gunes A J Plant Physiol; 2008; 165(5):490-503. PubMed ID: 17698244 [TBL] [Abstract][Full Text] [Related]
36. Comparative Genomics, Siderophore Production, and Iron Scavenging Potential of Root Zone Soil Bacteria Isolated from 'Concord' Grape Vineyards. Lewis RW; Islam A; Opdahl L; Davenport JR; Sullivan TS Microb Ecol; 2019 Oct; 78(3):699-713. PubMed ID: 30770943 [TBL] [Abstract][Full Text] [Related]
37. Regulation of the iron uptake genes in Pseudomonas fluorescens M114 by pseudobactin M114: the pbrA sigma factor gene does not mediate the siderophore regulatory response. Callanan M; Sexton R; Dowling DN; O'Gara F FEMS Microbiol Lett; 1996 Oct; 144(1):61-6. PubMed ID: 8870253 [TBL] [Abstract][Full Text] [Related]
38. A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin. Nowak-Thompson B; Gould SJ Biometals; 1994 Jan; 7(1):20-4. PubMed ID: 8118168 [TBL] [Abstract][Full Text] [Related]
39. High-throughput Siderophore Screening from Environmental Samples: Plant Tissues, Bulk Soils, and Rhizosphere Soils. Lewis RW; Islam AA; Dilla-Ermita CJ; Hulbert SH; Sullivan TS J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799863 [TBL] [Abstract][Full Text] [Related]
40. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Lemanceau P; Bakker PA; De Kogel WJ; Alabouvette C; Schippers B Appl Environ Microbiol; 1992 Sep; 58(9):2978-82. PubMed ID: 1444411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]