These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16349069)

  • 1. Comparison of ATP and ergosterol as indicators of fungal biomass associated with decomposing leaves in streams.
    Suberkropp K; Gessner MO; Chauvet E
    Appl Environ Microbiol; 1993 Oct; 59(10):3367-72. PubMed ID: 16349069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams.
    Gulis V; Suberkropp K; Rosemond AD
    Appl Environ Microbiol; 2008 Feb; 74(4):1094-101. PubMed ID: 18083884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal growth, production, and sporulation during leaf decomposition in two streams.
    Suberkropp K
    Appl Environ Microbiol; 2001 Nov; 67(11):5063-8. PubMed ID: 11679327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of fungal and bacterial production methodologies to decomposing leaves in streams.
    Suberkropp K; Weyers H
    Appl Environ Microbiol; 1996 May; 62(5):1610-5. PubMed ID: 16535312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability.
    Dangles O; Chauvet E
    Water Res; 2003 Feb; 37(3):533-8. PubMed ID: 12688687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams.
    Findlay S; Tank J; Dye S; Valett HM; Mulholland PJ; McDowell WH; Johnson SL; Hamilton SK; Edmonds J; Dodds WK; Bowden WB
    Microb Ecol; 2002 Jan; 43(1):55-66. PubMed ID: 11984629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams.
    Duarte S; Pascoal C; Cássio F
    Microb Ecol; 2008 Nov; 56(4):688-95. PubMed ID: 18443846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungi Originating From Tree Leaves Contribute to Fungal Diversity of Litter in Streams.
    Koivusaari P; Tejesvi MV; Tolkkinen M; Markkola A; Mykrä H; Pirttilä AM
    Front Microbiol; 2019; 10():651. PubMed ID: 31001228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invertebrates, Fungal Biomass, and Leaf Breakdown in Pools and Riffles of Neotropical Streams.
    Tavares Martins R; Souza da Silveira L; Pereira Lopes M; Gama Alves R
    J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28423423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams.
    Sridhar KR; Bärlocher F
    Appl Environ Microbiol; 2000 Mar; 66(3):1114-9. PubMed ID: 10698779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian cerrado: a 1-year study.
    Sales MA; Gonçalves JF; Dahora JS; Medeiros AO
    Microb Ecol; 2015 Jan; 69(1):84-94. PubMed ID: 25096988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river.
    Pascoal C; Cássio F
    Appl Environ Microbiol; 2004 Sep; 70(9):5266-73. PubMed ID: 15345409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams.
    Graça MA; Pozo J; Canhoto C; Elosegi A
    ScientificWorldJournal; 2002 Apr; 2():1173-85. PubMed ID: 12805976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf litter decomposition in Torna stream before and after a red mud disaster.
    Kucserka T; Karádi-Kovács K; Vass M; Selmeczy GB; Hubai KE; Üveges V; Kacsala I; Törő N; Padisák J
    Acta Biol Hung; 2014 Mar; 65(1):96-106. PubMed ID: 24561898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air temperature more than drought duration affects litter decomposition under flow intermittency.
    Simões S; Gonçalves AL; Jones TH; Sousa JP; Canhoto C
    Sci Total Environ; 2022 Jul; 829():154666. PubMed ID: 35314243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal biomass associated with decaying leaf litter in a stream.
    Gessner MO; Schwoerbel J
    Oecologia; 1991 Sep; 87(4):602-603. PubMed ID: 28313707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of zinc on leaf decomposition by fungi in streams: studies in microcosms.
    Duarte S; Pascoal C; Cássio F
    Microb Ecol; 2004 Oct; 48(3):366-74. PubMed ID: 15692857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Sci Total Environ; 2009 Jul; 407(14):4283-8. PubMed ID: 19411090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.