These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16349078)

  • 21. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. American Elm (Ulmus americana).
    Newhouse AE; Schrodt F; Maynard CA; Powell WA
    Methods Mol Biol; 2006; 344():99-112. PubMed ID: 17033055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.
    Duarte S; Cássio F; Ferreira V; Canhoto C; Pascoal C
    Microb Ecol; 2016 Aug; 72(2):263-76. PubMed ID: 27193000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen release pattern in decomposing leaf litter of banj oak and chir pine seedlings leaf under glass house condition.
    Usman S
    J Environ Biol; 2013 Jan; 34(1):135-8. PubMed ID: 24006820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosynthetic light response of flooded cherrybark oak (Quercus pagoda) seedlings grown in two light regimes.
    Gardiner ES; Krauss KW
    Tree Physiol; 2001 Sep; 21(15):1103-11. PubMed ID: 11581017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bur oak blight, a new disease on Quercus macrocarpa caused by Tubakia iowensis sp. nov.
    Harrington TC; McNew D; Yun HY
    Mycologia; 2012; 104(1):79-92. PubMed ID: 21937728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition.
    Cheever BM; Webster JR; Bilger EE; Thomas SA
    Ecology; 2013 Jul; 94(7):1614-25. PubMed ID: 23951721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference.
    Wright MS; Covich AP
    Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Senescent leaf exudate increases mosquito survival and microbial activity.
    Pelz-Stelinski KS; Walker ED; Kaufman MG
    Ecol Entomol; 2010 Jun; 35(3):329-340. PubMed ID: 21113430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decomposition dynamic of two aquatic macrophytes Trapa bispinosa Roxb. and Nelumbo nucifera detritus.
    Zhou X; Feng D; Wen C; Liu D
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16177-16191. PubMed ID: 29594882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest.
    Li W; Bai Z; Jin C; Zhang X; Guan D; Wang A; Yuan F; Wu J
    Sci Total Environ; 2017 Jul; 590-591():242-248. PubMed ID: 28262364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypersensitivity to common tree pollens in New York City patients.
    Lin RY; Clauss AE; Bennett ES
    Allergy Asthma Proc; 2002; 23(4):253-8. PubMed ID: 12221895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaf litter microbial decomposition in salinized streams under intermittency.
    Gonçalves AL; Simões S; Bärlocher F; Canhoto C
    Sci Total Environ; 2019 Feb; 653():1204-1212. PubMed ID: 30759560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tropospheric ozone effects on chemical composition and decomposition rate of Quercus ilex L. leaves.
    Baldantoni D; Fagnano M; Alfani A
    Sci Total Environ; 2011 Feb; 409(5):979-84. PubMed ID: 21167557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils : I. Breakdown, leaching and decomposition.
    Anderson JM
    Oecologia; 1973 Sep; 12(3):251-274. PubMed ID: 28308230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex.
    Niinemets U; Cescatti A; Rodeghiero M; Tosens T
    Plant Cell Environ; 2006 Jun; 29(6):1159-78. PubMed ID: 17080941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves.
    Voicu MC; Zwiazek JJ; Tyree MT
    Tree Physiol; 2008 Jul; 28(7):1007-15. PubMed ID: 18450565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cottonwood hybridization affects tannin and nitrogen content of leaf litter and alters decomposition.
    Driebe EM; Whitham TG
    Oecologia; 2000 Apr; 123(1):99-107. PubMed ID: 28308750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of Oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages.
    Gamboa-Gómez CI; Simental-Mendía LE; González-Laredo RF; Alcantar-Orozco EJ; Monserrat-Juarez VH; Ramírez-España JC; Gallegos-Infante JA; Moreno-Jiménez MR; Rocha-Guzmán NE
    Food Res Int; 2017 Dec; 102():690-699. PubMed ID: 29196002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical and nutritional factors associated with susceptibility of elms (Ulmus spp.) to the elm leaf beetle (Coleoptera: Chrysomelidae).
    Bosu PP; Wagner MR
    J Econ Entomol; 2008 Jun; 101(3):944-54. PubMed ID: 18613598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.