These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16349123)

  • 1. Microbial delignification with white rot fungi improves forage digestibility.
    Akin DE; Sethuraman A; Morrison WH; Martin SA; Eriksson KE
    Appl Environ Microbiol; 1993 Dec; 59(12):4274-82. PubMed ID: 16349123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus.
    Akin DE; Rigsby LL; Sethuraman A; Morrison WH; Gamble GR; Eriksson KE
    Appl Environ Microbiol; 1995 Apr; 61(4):1591-8. PubMed ID: 7747973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of lignocellulose in Bermuda grass by white rot fungi analyzed by solid-state 13C nuclear magnetic resonance.
    Gamble GR; Sethuraman A; Akin DE; Eriksson KE
    Appl Environ Microbiol; 1994 Sep; 60(9):3138-44. PubMed ID: 7944358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems.
    Jung HG; Valdez FR; Abad AR; Blanchette RA; Hatfield RD
    J Anim Sci; 1992 Jun; 70(6):1928-35. PubMed ID: 1321801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grass lignocellulose: strategies to overcome recalcitrance.
    Akin DE
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):3-15. PubMed ID: 18478372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.
    Yelle DJ; Kapich AN; Houtman CJ; Lu F; Timokhin VI; Fort RC; Ralph J; Hammel KE
    Appl Environ Microbiol; 2014 Dec; 80(24):7536-44. PubMed ID: 25261514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.
    Su Y; Xian H; Shi S; Zhang C; Manik SM; Mao J; Zhang G; Liao W; Wang Q; Liu H
    BMC Biotechnol; 2016 Nov; 16(1):81. PubMed ID: 27871279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages.
    Raffrenato E; Fievisohn R; Cotanch KW; Grant RJ; Chase LE; Van Amburgh ME
    J Dairy Sci; 2017 Oct; 100(10):8119-8131. PubMed ID: 28780096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative
    van Erven G; Nayan N; Sonnenberg ASM; Hendriks WH; Cone JW; Kabel MA
    Biotechnol Biofuels; 2018; 11():262. PubMed ID: 30263063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving ruminal digestibility of various wheat straw types by white-rot fungi.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jan; 99(2):957-965. PubMed ID: 30125969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.
    Srebotnik E; Jensen KA; Hammel KE
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12794-7. PubMed ID: 11607502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels.
    Anderson WF; Akin DE
    J Ind Microbiol Biotechnol; 2008 May; 35(5):355-366. PubMed ID: 18188624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.
    Akin DE
    Appl Environ Microbiol; 1980 Jan; 39(1):242-52. PubMed ID: 7356317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism.
    Tripathi MK; Mishra AS; Misra AK; Vaithiyanathan S; Prasad R; Jakhmola RC
    Lett Appl Microbiol; 2008 Mar; 46(3):364-70. PubMed ID: 18266643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.
    Srebotnik E; Jensen KA; Kawai S; Hammel KE
    Appl Environ Microbiol; 1997 Nov; 63(11):4435-40. PubMed ID: 16535732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The release and catabolism of ferulic acid in plant cell wall by rumen microbes: A review.
    Wang YL; Wang WK; Wu QC; Yang HJ
    Anim Nutr; 2022 Jun; 9():335-344. PubMed ID: 35600541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rumen fungi and forage fiber degradation.
    Windham WR; Akin DE
    Appl Environ Microbiol; 1984 Sep; 48(3):473-6. PubMed ID: 16346617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants.
    Jung HG; Allen MS
    J Anim Sci; 1995 Sep; 73(9):2774-90. PubMed ID: 8582870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen.
    Akin DE; Rigsby LL
    Appl Environ Microbiol; 1987 Sep; 53(9):1987-95. PubMed ID: 2823705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.