BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16349247)

  • 1. Effect of Motility on Surface Colonization and Reproductive Success of Pseudomonas fluorescens in Dual-Dilution Continuous Culture and Batch Culture Systems.
    Korber DR; Lawrence JR; Caldwell DE
    Appl Environ Microbiol; 1994 May; 60(5):1421-9. PubMed ID: 16349247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of laminar flow velocity on the kinetics of surface recolonization by Mot(+) and Mot (-) Pseudomonas fluorescens.
    Korber DR; Lawrence JR; Sutton B; Caldwell DE
    Microb Ecol; 1989 Jul; 18(1):1-19. PubMed ID: 24196017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber.
    McClaine JW; Ford RM
    Biotechnol Bioeng; 2002 Apr; 78(2):179-89. PubMed ID: 11870609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots.
    Turnbull GA; Morgan JA; Whipps JM; Saunders JR
    FEMS Microbiol Ecol; 2001 Jun; 36(1):21-31. PubMed ID: 11377770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flagellar Motility Confers Epiphytic Fitness Advantages upon Pseudomonas syringae.
    Haefele DM; Lindow SE
    Appl Environ Microbiol; 1987 Oct; 53(10):2528-33. PubMed ID: 16347469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments.
    Lawrence JR; Delaquis PJ; Korber DR; Caldwell DE
    Microb Ecol; 1987 Jul; 14(1):1-14. PubMed ID: 24202602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Substratum Topography on Bacterial Adhesion.
    Scheuerman TR; Camper AK; Hamilton MA
    J Colloid Interface Sci; 1998 Dec; 208(1):23-33. PubMed ID: 9820746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots.
    Turnbull GA; Morgan JA; Whipps JM; Saunders JR
    FEMS Microbiol Ecol; 2001 Mar; 35(1):57-65. PubMed ID: 11248390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
    Liu J; Ford RM; Smith JA
    Environ Sci Technol; 2011 May; 45(9):3945-51. PubMed ID: 21456575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial swimming motility enhances cell deposition and surface coverage.
    de Kerchove AJ; Elimelech M
    Environ Sci Technol; 2008 Jun; 42(12):4371-7. PubMed ID: 18605557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of 2 culture methods and PCR assays for Salmonella detection in poultry feces.
    Soria MC; Soria MA; Bueno DJ
    Poult Sci; 2012 Mar; 91(3):616-26. PubMed ID: 22334736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the role of flagella in the transport of motile and nonmotile Salmonella enterica serovars.
    Haznedaroglu BZ; Zorlu O; Hill JE; Walker SL
    Environ Sci Technol; 2010 Jun; 44(11):4184-90. PubMed ID: 20504046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous marine snow differentially benefits chemotactic, motile, and nonmotile bacteria.
    Borer B; Zhang IH; Baker AE; O'Toole GA; Babbin AR
    PNAS Nexus; 2023 Feb; 2(2):pgac311. PubMed ID: 36845354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and rates of bacterial colonization of sinking aggregates.
    Kiørboe T; Grossart HP; Ploug H; Tang K
    Appl Environ Microbiol; 2002 Aug; 68(8):3996-4006. PubMed ID: 12147501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models.
    Richardson K
    Infect Immun; 1991 Aug; 59(8):2727-36. PubMed ID: 1855990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth kinetics ofPseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments.
    Caldwell DE; Lawrence JR
    Microb Ecol; 1986 Sep; 12(3):299-312. PubMed ID: 24212683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces.
    Barahona E; Navazo A; Yousef-Coronado F; Aguirre de Cárcer D; Martínez-Granero F; Espinosa-Urgel M; Martín M; Rivilla R
    Environ Microbiol; 2010 Dec; 12(12):3185-95. PubMed ID: 20626456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of microbial movement in subsurface materials.
    Reynolds PJ; Sharma P; Jenneman GE; McInerney MJ
    Appl Environ Microbiol; 1989 Sep; 55(9):2280-6. PubMed ID: 2552920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colonization of gnotobiotic mice by Roseburia cecicola, a motile, obligately anaerobic bacterium from murine ceca.
    Stanton TB; Savage DC
    Appl Environ Microbiol; 1983 May; 45(5):1677-84. PubMed ID: 6870243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.