BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16349255)

  • 21. Lignin degradation by Agaricus bisporus accounts for a 30% increase in bioavailable holocellulose during cultivation on compost.
    ten Have R; Wijngaard H; Ariës-Kronenburg NA; Straatsma G; Schaap PJ
    J Agric Food Chem; 2003 Apr; 51(8):2242-5. PubMed ID: 12670164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation.
    Kabel MA; Jurak E; Mäkelä MR; de Vries RP
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4363-4369. PubMed ID: 28466110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of α-1,3-L-arabinofuranosidase active on substituted xylan does not improve compost degradation by Agaricus bisporus.
    Vos AM; Jurak E; de Gijsel P; Ohm RA; Henrissat B; Lugones LG; Kabel MA; Wösten HAB
    PLoS One; 2018; 13(7):e0201090. PubMed ID: 30040824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. H
    Vos AM; Jurak E; Pelkmans JF; Herman K; Pels G; Baars JJ; Hendrix E; Kabel MA; Lugones LG; Wösten HAB
    AMB Express; 2017 Dec; 7(1):124. PubMed ID: 28629207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of recalcitrant xylan in mushroom-compost is due to a lack of xylan substituent removing enzyme activities of Agaricus bisporus.
    Jurak E; Patyshakuliyeva A; Kapsokalyvas D; Xing L; van Zandvoort MA; de Vries RP; Gruppen H; Kabel MA
    Carbohydr Polym; 2015 Nov; 132():359-68. PubMed ID: 26256360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Bacterial communities in the phase II of Agaricus bisporus compost by denaturing gradient gel electrophoresis].
    He L; Chen M; Pan Y
    Wei Sheng Wu Xue Bao; 2009 Feb; 49(2):227-32. PubMed ID: 19445179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus.
    Šantrić L; Potočnik I; Radivojević L; Umiljendić JG; Rekanović E; Duduk B; Milijašević-Marčić S
    J Environ Sci Health B; 2018; 53(10):677-684. PubMed ID: 29775426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation.
    Vieira FR; Pecchia JA
    Microb Ecol; 2018 Feb; 75(2):318-330. PubMed ID: 28730353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental impact of mushroom compost production.
    Leiva F; Saenz-Díez JC; Martínez E; Jiménez E; Blanco J
    J Sci Food Agric; 2016 Sep; 96(12):3983-90. PubMed ID: 26693660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments.
    Jurak E; Patyshakuliyeva A; de Vries RP; Gruppen H; Kabel MA
    PLoS One; 2015; 10(8):e0134169. PubMed ID: 26237450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains.
    de Andrade MC; de Jesus JP; Vieira FR; Viana SR; Spoto MH; de Almeida Minhoni MT
    Braz J Microbiol; 2013 Dec; 44(4):1139-46. PubMed ID: 24688503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biology of Mushroom Phorid Flies, Megaselia halterata (Diptera: Phoridae): Effects of Temperature, Humidity, Crowding, and Compost Stage.
    Shikano I; Woolcott J; Cloonan K; Andreadis S; Jenkins NE
    Environ Entomol; 2021 Feb; 50(1):149-153. PubMed ID: 33211094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imidacloprid dissipation, metabolism and accumulation in Agaricus bisporus fruits, casing soil and compost and dietary risk assessment.
    Zhang Q; Wang X; Rao Q; Chen S; Song W
    Chemosphere; 2020 Sep; 254():126837. PubMed ID: 32339803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial population dynamics in recycled mushroom compost leachate.
    Safianowicz K; Bell TL; Kertesz MA
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5335-5342. PubMed ID: 29696332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulating
    Vieira FR; Di Tomassi I; O'Connor E; Bull CT; Pecchia JA; Hockett KL
    Microbiol Spectr; 2023 Dec; 11(6):e0197823. PubMed ID: 37831469
    [No Abstract]   [Full Text] [Related]  

  • 36. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost.
    Mamiro DP; Royse DJ
    Bioresour Technol; 2008 May; 99(8):3205-12. PubMed ID: 17761414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.
    Stoknes K; Beyer DM; Norgaard E
    J Sci Food Agric; 2013 Jul; 93(9):2188-200. PubMed ID: 23371778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungal community assembly during a high-temperature composting under different pasteurization regimes used to elaborate the Agaricus bisporus substrate.
    Rocha Vieira F; Andrew Pecchia J
    Fungal Biol; 2021 Oct; 125(10):826-833. PubMed ID: 34537178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for
    Song T; Shen Y; Jin Q; Feng W; Fan L; Cao G; Cai W
    PeerJ; 2021; 9():e10452. PubMed ID: 33614258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus.
    Krupke OA; Castle AJ; Rinker DL
    Mycol Res; 2003 Dec; 107(Pt 12):1467-75. PubMed ID: 15000247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.