These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 16349277)

  • 61. Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein.
    Klupp BG; Fuchs W; Granzow H; Nixdorf R; Mettenleiter TC
    J Virol; 2002 Mar; 76(6):3065-71. PubMed ID: 11861875
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reduced Binding of the Endolysin LysTP712 to Lactococcus lactis ΔftsH Contributes to Phage Resistance.
    Roces C; Campelo AB; Escobedo S; Wegmann U; García P; Rodríguez A; Martínez B
    Front Microbiol; 2016; 7():138. PubMed ID: 26904011
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030.
    O'Sullivan DJ; Zagula K; Klaenhammer TR
    J Bacteriol; 1995 Jan; 177(1):134-43. PubMed ID: 7528201
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Construction of a Bacteriophage-Resistant Derivative of Lactococcus lactis subsp. lactis 425A by Using the Conjugal Plasmid pNP40.
    Harrington A; Hill C
    Appl Environ Microbiol; 1991 Dec; 57(12):3405-9. PubMed ID: 16348595
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression of human cytomegalovirus UL36 and UL37 genes is required for viral DNA replication.
    Smith JA; Pari GS
    J Virol; 1995 Mar; 69(3):1925-31. PubMed ID: 7853536
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differentiation of Two Abortive Mechanisms by Using Monoclonal Antibodies Directed toward Lactococcal Bacteriophage Capsid Proteins.
    Moineau S; Durmaz E; Pandian S; Klaenhammer TR
    Appl Environ Microbiol; 1993 Jan; 59(1):208-12. PubMed ID: 16348844
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA.
    Millen AM; Samson JE; Tremblay DM; Magadán AH; Rousseau GM; Moineau S; Romero DA
    RNA Biol; 2019 Apr; 16(4):461-468. PubMed ID: 30081743
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodiversity of Lactococcus lactis bacteriophages in Polish dairy environment.
    Szczepańska AK; Hejnowicz MS; Kołakowski P; Bardowski J
    Acta Biochim Pol; 2007; 54(1):151-8. PubMed ID: 17311108
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A triggered-suicide system designed as a defense against bacteriophages.
    Djordjevic GM; O'Sullivan DJ; Walker SA; Conkling MA; Klaenhammer TR
    J Bacteriol; 1997 Nov; 179(21):6741-8. PubMed ID: 9352925
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Leaky Lactococcus cultures that externalize enzymes and antigens independently of culture lysis and secretion and export pathways.
    Walker SA; Klaenhammer TR
    Appl Environ Microbiol; 2001 Jan; 67(1):251-9. PubMed ID: 11133453
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages.
    Tangney M; Fitzgerald GF
    FEMS Microbiol Lett; 2002 Apr; 210(1):67-72. PubMed ID: 12023079
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular characterization of a phage-encoded resistance system in Lactococcus lactis.
    McGrath S; Seegers JF; Fitzgerald GF; van Sinderen D
    Appl Environ Microbiol; 1999 May; 65(5):1891-9. PubMed ID: 10223975
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage.
    Hill C; Miller LA; Klaenhammer TR
    J Bacteriol; 1991 Jul; 173(14):4363-70. PubMed ID: 1906061
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparison of lactococcal bacteriophage isolated in the United States and Argentina.
    de Fabrizio SV; Ledford RA; Shieh YS; Brown J; Parada JL
    Int J Food Microbiol; 1991 Aug; 13(4):285-93. PubMed ID: 1911085
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of genetic elements required for site-specific integration of the temperate lactococcal bacteriophage phi LC3 and construction of integration-negative phi LC3 mutants.
    Lillehaug D; Birkeland NK
    J Bacteriol; 1993 Mar; 175(6):1745-55. PubMed ID: 8449882
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Production of Monoclonal Antibodies against the Major Capsid Protein of the Lactococcus Bacteriophage ul36 and Development of an Enzyme-Linked Immunosorbent Assay for Direct Phage Detection in Whey and Milk.
    Moineau S; Bernier D; Jobin M; Hébert J; Klaenhammer TR; Pandian S
    Appl Environ Microbiol; 1993 Jul; 59(7):2034-40. PubMed ID: 16348980
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an Iso-ISS1 element.
    Cluzel PJ; Chopin A; Ehrlich SD; Chopin MC
    Appl Environ Microbiol; 1991 Dec; 57(12):3547-51. PubMed ID: 1664711
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration.
    Christiansen B; Johnsen MG; Stenby E; Vogensen FK; Hammer K
    J Bacteriol; 1994 Feb; 176(4):1069-76. PubMed ID: 8106318
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparative genomic analysis of Lactococcus garvieae phage WP-2, a new member of Picovirinae subfamily of Podoviridae.
    Ghasemi SM; Bouzari M; Yoon BH; Chang HI
    Gene; 2014 Nov; 551(2):222-9. PubMed ID: 25178524
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterisation of technologically proficient wild Lactococcus lactis strains resistant to phage infection.
    Madera C; García P; Janzen T; Rodríguez A; Suárez JE
    Int J Food Microbiol; 2003 Sep; 86(3):213-22. PubMed ID: 12915032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.