These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 16349543)
1. Synergism between Bacillus thuringiensis Spores and Toxins against Resistant and Susceptible Diamondback Moths (Plutella xylostella). Liu YB; Tabashnik BE; Moar WJ; Smith RA Appl Environ Microbiol; 1998 Apr; 64(4):1385-9. PubMed ID: 16349543 [TBL] [Abstract][Full Text] [Related]
2. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Tabashnik BE; Finson N; Johnson MW; Moar WJ Appl Environ Microbiol; 1993 May; 59(5):1332-5. PubMed ID: 16348929 [TBL] [Abstract][Full Text] [Related]
3. Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth. Liu YB; Tabashnik BE; Meyer SK; Crickmore N Appl Environ Microbiol; 2001 Jul; 67(7):3216-9. PubMed ID: 11425744 [TBL] [Abstract][Full Text] [Related]
4. Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Sayyed AH; Haward R; Herrero S; Ferré J; Wright DJ Appl Environ Microbiol; 2000 Apr; 66(4):1509-16. PubMed ID: 10742234 [TBL] [Abstract][Full Text] [Related]
5. Contribution of Bacillus thuringiensis Spores to Toxicity of Purified Cry Proteins Towards Indianmeal Moth Larvae. Johnson DE; McGaughey WH Curr Microbiol; 1996 Jul; 33(1):54-9. PubMed ID: 8661690 [TBL] [Abstract][Full Text] [Related]
6. A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. Wright DJ; Iqbal M; Granero F; Ferre J Appl Environ Microbiol; 1997 May; 63(5):1814-9. PubMed ID: 16535597 [TBL] [Abstract][Full Text] [Related]
7. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498 [TBL] [Abstract][Full Text] [Related]
8. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella). Tabashnik BE; Finson N; Johnson MW; Heckel DG Appl Environ Microbiol; 1994 Dec; 60(12):4627-9. PubMed ID: 16349471 [TBL] [Abstract][Full Text] [Related]
10. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Ballester V; Granero F; Tabashnik BE; Malvar T; Ferré J Appl Environ Microbiol; 1999 Apr; 65(4):1413-9. PubMed ID: 10103230 [TBL] [Abstract][Full Text] [Related]
11. Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae). Liu YB; Tabashnik BE; Masson L; Escriche B; Ferré J J Econ Entomol; 2000 Feb; 93(1):1-6. PubMed ID: 14658503 [TBL] [Abstract][Full Text] [Related]
12. Relationship of the syntheses of spore coat protein and parasporal crystal protein in Bacillus thuringiensis. Aronson AI; Tyrell DJ; Fitz-James PC; Bulla LA J Bacteriol; 1982 Jul; 151(1):399-410. PubMed ID: 7085565 [TBL] [Abstract][Full Text] [Related]
13. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Tabashnik BE; Malvar T; Liu YB; Finson N; Borthakur D; Shin BS; Park SH; Masson L; de Maagd RA; Bosch D Appl Environ Microbiol; 1996 Aug; 62(8):2839-44. PubMed ID: 8702276 [TBL] [Abstract][Full Text] [Related]
15. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins and associated resistance development in India. Mohan M; Gujar GT Bull Entomol Res; 2002 Dec; 92(6):489-98. PubMed ID: 17598300 [TBL] [Abstract][Full Text] [Related]
16. Inheritance of Resistance to the Bacillus thuringiensis Toxin Cry1C in the Diamondback Moth. Liu Y; Tabashnik BE Appl Environ Microbiol; 1997 Jun; 63(6):2218-23. PubMed ID: 16535623 [TBL] [Abstract][Full Text] [Related]
17. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Mohan M; Sushil SN; Selvakumar G; Bhatt JC; Gujar GT; Gupta HS Pest Manag Sci; 2009 Jan; 65(1):27-33. PubMed ID: 18785222 [TBL] [Abstract][Full Text] [Related]
18. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
19. Spore coat protein synergizes bacillus thuringiensis crystal toxicity for the indianmeal moth. Johnson DE; Oppert B; McGaughey WH Curr Microbiol; 1998 May; 36(5):278-82. PubMed ID: 9541564 [TBL] [Abstract][Full Text] [Related]
20. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Sayyed AH; Crickmore N; Wright DJ Appl Environ Microbiol; 2001 Dec; 67(12):5859-61. PubMed ID: 11722947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]