These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16349691)

  • 1. Effect of air ions on submicron t1 bacteriophage aerosols.
    Happ JW; Harstad JB; Buchanan LM
    Appl Microbiol; 1966 Nov; 14(6):888-91. PubMed ID: 16349691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling submicron T1 bacteriophage aerosols.
    Harstad JB
    Appl Microbiol; 1965 Nov; 13(6):899-908. PubMed ID: 5866038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Air Samplers for Recovery of Biological Aerosols in Dairy Processing Plants.
    Kang YJ; Frank JF
    J Food Prot; 1989 Sep; 52(9):655-659. PubMed ID: 31003282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of slit sampler in quantitative studies of bacterial aerosols.
    Ehrlich R; Miller S; Idoine LS
    Appl Microbiol; 1966 May; 14(3):328-30. PubMed ID: 4961550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced recovery of airborne T3 coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique.
    Hatch MT; Warren JC
    Appl Microbiol; 1969 May; 17(5):685-9. PubMed ID: 4891719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constant flow filter air sampler for workplace environments.
    Parulian A; Rodgers JC; McFarland AR
    Health Phys; 1996 Dec; 71(6):870-8. PubMed ID: 8919070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
    Grinshpun SA; Mainelis G; Trunov M; Adhikari A; Reponen T; Willeke K
    Indoor Air; 2005 Aug; 15(4):235-45. PubMed ID: 15982270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.
    Park JH; Yoon KY; Na H; Kim YS; Hwang J; Kim J; Yoon YH
    Sci Total Environ; 2011 Sep; 409(19):4132-8. PubMed ID: 21767869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a personal and microenvironmental aerosol speciation sampler (PMASS).
    Geyh AS; Hering S; Kreisberg N; John W
    Res Rep Health Eff Inst; 2004 Nov; (122):1-22; discussion 23-9. PubMed ID: 15675716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-separated sampling and analysis of isocyanates in workplace aerosols. Part I. Denuder--cascade impactor sampler.
    Dahlin J; Spanne M; Karlsson D; Dalene M; Skarping G
    Ann Occup Hyg; 2008 Jul; 52(5):361-74. PubMed ID: 18458354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers.
    Zamengo L; Barbiero N; Gregio M; Orrù G
    Chemosphere; 2009 Jul; 76(3):313-23. PubMed ID: 19398120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetration of submicron aerosols through high-efficiency air filters.
    Yamada Y; Miyamoto K; Mori T; Koizumi A
    Health Phys; 1984 Mar; 46(3):543-7. PubMed ID: 6698782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling atmospheric carbonaceous aerosols using a particle trap impactor/denuder sampler.
    Mader BT; Flagan RC; Seinfeld JH
    Environ Sci Technol; 2001 Dec; 35(24):4857-67. PubMed ID: 11775162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the sampling efficiencies of a range of atmosphere samplers when collecting polymeric diphenylmethane di-isocyanate (MDI) aerosols.
    Hext PM; Booth K; Dharmarajan V; Karoly WJ; Parekh PP; Spence M
    Appl Occup Environ Hyg; 2003 May; 18(5):346-57. PubMed ID: 12746078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microanalysis of indoor aerosols and the impact of a compact high-efficiency particulate air (HEPA) filter system.
    Abraham ME
    Indoor Air; 1999 Mar; 9(1):33-40. PubMed ID: 10195274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for quantifying Staphylococcus aureus in indoor air.
    Chang CW; Wang LJ
    Indoor Air; 2015 Feb; 25(1):59-67. PubMed ID: 24773454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry. Development of methodology for combined aerosol and vapor sampling.
    Solbu K; Thorud S; Hersson M; Ovrebø S; Ellingsen DG; Lundanes E; Molander P
    J Chromatogr A; 2007 Aug; 1161(1-2):275-83. PubMed ID: 17574560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation, transmission and infectiosity of chicken MDV aerosols under experimental conditions.
    Hao H; Li C; Qiu Y; Wang F; Ai W; Gao J; Wei L; Li X; Sun L; Wu J; Qin G; Li R; Liu J; Lv J; Huang R; Wang H; Chai T
    Vet Microbiol; 2014 Aug; 172(3-4):400-6. PubMed ID: 24999232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.