These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 1635032)
21. A within-vector mathematical model of Plasmodium falciparum and implications of incomplete fertilization on optimal gametocyte sex ratio. Teboh-Ewungkem MI; Yuster T J Theor Biol; 2010 May; 264(2):273-86. PubMed ID: 20122943 [TBL] [Abstract][Full Text] [Related]
22. Plasmodium falciparum: release of circumsporozoite protein by sporozoites in the mosquito vector. Beier JC; Vaughan JA; Madani A; Noden BH Exp Parasitol; 1992 Sep; 75(2):248-56. PubMed ID: 1516673 [TBL] [Abstract][Full Text] [Related]
23. Ookinete rates in Afrotropical anopheline mosquitoes as a measure of human malaria infectiousness. Beier JC; Copeland RS; Mtalib R; Vaughan JA Am J Trop Med Hyg; 1992 Jul; 47(1):41-6. PubMed ID: 1636882 [TBL] [Abstract][Full Text] [Related]
24. Plasmodium berghei ookinete densities in three anopheline species. Vaughan JA; Narum D; Azad AF J Parasitol; 1991 Oct; 77(5):758-61. PubMed ID: 1919925 [TBL] [Abstract][Full Text] [Related]
25. The use of anti-Pfs 25 monoclonal antibody for early determination of Plasmodium falciparum oocyst infections in Anopheles gambiae: comparison with the current technique of direct microscopic diagnosis. Gouagna LC; Bonnet S; Gounoue R; Tchuinkam T; Safeukui I; Verhave JP; Eling W; Boudin C Exp Parasitol; 1999 Jul; 92(3):209-14. PubMed ID: 10403762 [TBL] [Abstract][Full Text] [Related]
26. Comparative susceptibility of two forms of Anopheles sinensis Wiedemann 1828 (Diptera : Culicidae) to infection with Plasmodium falciparum, P. vivax, P. yoelii and the determination of misleading factor for sporozoite identification. Rongsriyam Y; Jitpakdi A; Choochote W; Somboon P; Tookyang B; Suwonkerd W Southeast Asian J Trop Med Public Health; 1998 Mar; 29(1):159-67. PubMed ID: 9740293 [TBL] [Abstract][Full Text] [Related]
27. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Noden BH; Vaughan JA; Pumpuni CB; Beier JC Parasitol Int; 2011 Dec; 60(4):440-6. PubMed ID: 21763778 [TBL] [Abstract][Full Text] [Related]
28. Immunodetection of Plasmodium falciparum zygotes and ookinetes in Anopheles blood meals. Chege GM; Beier JC J Am Mosq Control Assoc; 1994 Sep; 10(3):419-22. PubMed ID: 7807087 [TBL] [Abstract][Full Text] [Related]
29. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti. Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877 [TBL] [Abstract][Full Text] [Related]
30. Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection. Baton LA; Ranford-Cartwright LC Int J Parasitol; 2012; 42(3):249-58. PubMed ID: 22366731 [TBL] [Abstract][Full Text] [Related]
31. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Vernick KD; Fujioka H; Seeley DC; Tandler B; Aikawa M; Miller LH Exp Parasitol; 1995 Jun; 80(4):583-95. PubMed ID: 7758539 [TBL] [Abstract][Full Text] [Related]
33. Mosquito-Plasmodium interactions in response to immune activation of the vector. Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043 [TBL] [Abstract][Full Text] [Related]
34. Infectivity of Plasmodium vivax and P. falciparum to Anopheles tessellatus; relationship between oocyst and sporozoite development. Gamage-Mendis AC; Rajakaruna J; Weerasinghe S; Mendis C; Carter R; Mendis KN Trans R Soc Trop Med Hyg; 1993; 87(1):3-6. PubMed ID: 8465388 [TBL] [Abstract][Full Text] [Related]
35. Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. Baton LA; Ranford-Cartwright LC J Invertebr Pathol; 2007 Nov; 96(3):244-54. PubMed ID: 17575986 [TBL] [Abstract][Full Text] [Related]
36. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Bell AS; Ranford-Cartwright LC Int J Parasitol; 2004 Jun; 34(7):795-802. PubMed ID: 15157762 [TBL] [Abstract][Full Text] [Related]
37. Plasmodium yoelii sporozoite infectivity varies as a function of sporozoite loads in Anopheles stephensi mosquitoes. Pumpuni CB; Mendis C; Beier JC J Parasitol; 1997 Aug; 83(4):652-5. PubMed ID: 9267407 [TBL] [Abstract][Full Text] [Related]
38. Late sporogonic stages of Zeineddine S; Jaber S; Saab SA; Nakhleh J; Dimopoulos G; Osta MA Front Cell Infect Microbiol; 2024; 14():1438019. PubMed ID: 39149419 [TBL] [Abstract][Full Text] [Related]
39. Immunogold localization of circumsporozoite protein of the malaria parasite Plasmodium falciparum during sporogony in Anopheles stephensi midguts. Posthuma G; Meis JF; Verhave JP; Hollingdale MR; Ponnudurai T; Meuwissen JH; Geuze HJ Eur J Cell Biol; 1988 Apr; 46(1):18-24. PubMed ID: 3294006 [TBL] [Abstract][Full Text] [Related]
40. Getting infectious: formation and maturation of Plasmodium sporozoites in the Anopheles vector. Matuschewski K Cell Microbiol; 2006 Oct; 8(10):1547-56. PubMed ID: 16984410 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]