These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16350361)

  • 1. A statistical analysis of visibility-impairing particles in federal Class I areas.
    Copeland SA
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1621-35. PubMed ID: 16350361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air pollutant source characterization using the revised regional haze tracking metric and a photochemical grid model and implications for regional haze planning.
    Brewer P; Tonnesen G; Morris R; Moore T; Nopmongcol U; Miller D
    J Air Waste Manag Assoc; 2019 Mar; 69(3):373-390. PubMed ID: 30339494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recommended metric for tracking visibility progress in the Regional Haze Rule.
    Gantt B; Beaver M; Timin B; Lorang P
    J Air Waste Manag Assoc; 2018 May; 68(5):438-445. PubMed ID: 29309260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in speciated fine particulate matter and visibility across monitoring networks in the Southeastern United States.
    Brewer PF; Adlhoch JP
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1663-74. PubMed ID: 16350364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of progress toward regional haze rule visibility goals using United States anthropogenic emissions rate of progress.
    Morris R; Tonnesen G; Brewer P; Moore T; Rodriguez M
    J Air Waste Manag Assoc; 2022 Nov; 72(11):1259-1278. PubMed ID: 36205721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source contributions to visibility impairment in the southeastern and western United States.
    Brewer P; Moore T
    J Air Waste Manag Assoc; 2009 Sep; 59(9):1070-81. PubMed ID: 19785274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. U.S. national PM2.5 Chemical Speciation Monitoring Networks-CSN and IMPROVE: description of networks.
    Solomon PA; Crumpler D; Flanagan JB; Jayanty RK; Rickman EE; McDade CE
    J Air Waste Manag Assoc; 2014 Dec; 64(12):1410-38. PubMed ID: 25562937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural background visibility and regional haze goals in the Southeastern United States.
    Tombach I; Brewer P
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1600-20. PubMed ID: 16350360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Historical Prediction Modeling Approach for Estimating Long-Term Concentrations of PM2.5 in Cohort Studies before the 1999 Implementation of Widespread Monitoring.
    Kim SY; Olives C; Sheppard L; Sampson PD; Larson TV; Keller JP; Kaufman JD
    Environ Health Perspect; 2017 Jan; 125(1):38-46. PubMed ID: 27340825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconciliation and interpretation of the Big Bend National Park light extinction source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part II.
    Pitchford ML; Schichtel BA; Gebhart KA; Barna MG; Malm WC; Tombach IH; Knipping EM
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1726-32. PubMed ID: 16350369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics and Formation Mechanism of a Multi-Day Haze in the Winter of Shijiazhuang Using a Single Particle Aerosol Mass Spectrometer (SPAMS)].
    Zhou JB; Ren YB; Hong G; Lu N; Li ZG; Li L; Li HL; Jin W
    Huan Jing Ke Xue; 2015 Nov; 36(11):3972-80. PubMed ID: 26910980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the IMPROVE Equation for estimating aerosol light extinction.
    Lowenthal DH; Kumar N
    J Air Waste Manag Assoc; 2016 Jul; 66(7):726-37. PubMed ID: 27104488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The midlatitude North American background aerosol and global aerosol variation.
    Hidy GM; Blanchard CL
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1585-99. PubMed ID: 16350359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precipitation in light extinction reconstruction.
    Ryan PA
    J Air Waste Manag Assoc; 2005 Jul; 55(7):1014-8. PubMed ID: 16111142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meteorological and chemical impacts on PM
    Bao Z; Chen L; Li K; Han L; Wu X; Gao X; Azzi M; Cen K
    Environ Pollut; 2019 Jul; 250():520-529. PubMed ID: 31026699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution.
    Li H; Ma Y; Duan F; He K; Zhu L; Huang T; Kimoto T; Ma X; Ma T; Xu L; Xu B; Yang S; Ye S; Sun Z; An J; Zhang Z
    Environ Pollut; 2017 Oct; 229():339-349. PubMed ID: 28609735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.
    Liu Z; Wang Y; Hu B; Ji D; Zhang J; Wu F; Wan X; Wang Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6845-60. PubMed ID: 26667647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.