These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16350372)

  • 1. Improved light extinction reconstruction in interagency monitoring of protected visual environments.
    Ryan PA; Lowenthal D; Kumar N
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1751-9. PubMed ID: 16350372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precipitation in light extinction reconstruction.
    Ryan PA
    J Air Waste Manag Assoc; 2005 Jul; 55(7):1014-8. PubMed ID: 16111142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revised algorithm for estimating light extinction from IMPROVE particle speciation data.
    Pitchford M; Maim W; Schichtel B; Kumar N; Lowenthal D; Hand J
    J Air Waste Manag Assoc; 2007 Nov; 57(11):1326-36. PubMed ID: 18069456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PM2.5 mass and light extinction reconstruction in IMPROVE.
    Lowenthal DH; Kumar N
    J Air Waste Manag Assoc; 2003 Sep; 53(9):1109-20. PubMed ID: 13678368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open-path, closed-path, and reconstructed aerosol extinction at a rural site.
    Gordon TD; Prenni AJ; Renfro JR; McClure E; Hicks B; Onasch TB; Freedman A; McMeeking GR; Chen P
    J Air Waste Manag Assoc; 2018 Aug; 68(8):824-835. PubMed ID: 29630469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the IMPROVE Equation for estimating aerosol light extinction.
    Lowenthal DH; Kumar N
    J Air Waste Manag Assoc; 2016 Jul; 66(7):726-37. PubMed ID: 27104488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recommended metric for tracking visibility progress in the Regional Haze Rule.
    Gantt B; Beaver M; Timin B; Lorang P
    J Air Waste Manag Assoc; 2018 May; 68(5):438-445. PubMed ID: 29309260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critique of "Precipitation in light extinction reconstruction" by P.A. Ryan.
    Schichtel BA; Malm WC; Pitchford ML
    J Air Waste Manag Assoc; 2006 May; 56(5):539-46. PubMed ID: 16739789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine particulate chemical composition and light extinction at Meadview, AZ.
    Eatough DJ; Cui W; Hull J; Farber RJ
    J Air Waste Manag Assoc; 2006 Dec; 56(12):1694-706. PubMed ID: 17195488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region.
    Fu X; Wang X; Hu Q; Li G; Ding X; Zhang Y; He Q; Liu T; Zhang Z; Yu Q; Shen R; Bi X
    J Environ Sci (China); 2016 Feb; 40():10-9. PubMed ID: 26969540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering from sea-salt aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.
    Lowenthal D; Kumar N
    J Air Waste Manag Assoc; 2006 May; 56(5):636-42. PubMed ID: 16739800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of mass scattering efficiencies in IMPROVE.
    Lowenthal DH; Kumar N
    J Air Waste Manag Assoc; 2004 Aug; 54(8):926-34. PubMed ID: 15373360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of time-resolved light extinction and its applications to visibility management in the Lower Fraser Valley of British Columbia, Canada.
    So R; Vingarzan R; Jones K; Pitchford M
    J Air Waste Manag Assoc; 2015 Jun; 65(6):707-20. PubMed ID: 25976484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering cross-section emission factors for visibility and radiative transfer applications: military vehicles traveling on unpaved roads.
    Moosmüller H; Varma R; Arnott WP; Kuhns HD; Etyemezian V; Gillies JA
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1743-50. PubMed ID: 16350371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of NO2 predictions by the plume volume molar ratio method (PVMRM) and ozone limiting method (OLM) in AERMOD using new field observations.
    Hendrick EM; Tino VR; Hanna SR; Egan BA
    J Air Waste Manag Assoc; 2013 Jul; 63(7):844-54. PubMed ID: 23926853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of assumptions for estimating chemical light extinction at U.S. national parks.
    Lowenthal D; Zielinska B; Samburova V; Collins D; Taylor N; Kumar N
    J Air Waste Manag Assoc; 2015 Mar; 65(3):249-60. PubMed ID: 25947121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of light scattering in an urban area with a nephelometer and PM2.5 FDMS TEOM monitor: accounting for the effect of water.
    Cropper PM; Hansen JC; Eatough DJ
    J Air Waste Manag Assoc; 2013 Sep; 63(9):1004-11. PubMed ID: 24151675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fixed frequency aerosol albedometer.
    Thompson JE; Barta N; Policarpio D; Duvall R
    Opt Express; 2008 Feb; 16(3):2191-205. PubMed ID: 18542299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciliation and interpretation of the Big Bend National Park light extinction source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part II.
    Pitchford ML; Schichtel BA; Gebhart KA; Barna MG; Malm WC; Tombach IH; Knipping EM
    J Air Waste Manag Assoc; 2005 Nov; 55(11):1726-32. PubMed ID: 16350369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.