BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 16350377)

  • 1. Gaseous microemboli and the influence of microporous membrane oxygenators.
    Weitkemper HH; Oppermann B; Spilker A; Knobl HJ; Körfer R
    J Extra Corpor Technol; 2005 Sep; 37(3):256-64. PubMed ID: 16350377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.
    Stehouwer MC; Boers C; de Vroege R; C Kelder J; Yilmaz A; Bruins P
    Int J Artif Organs; 2011 Apr; 34(4):374-82. PubMed ID: 21534248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles.
    Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R
    Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli.
    Moroi M; Force M; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator.
    Sutton RG; Riley JB; Merrill JH
    J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.
    Wang S; Chin BJ; Gentile F; Kunselman AR; Palanzo D; Ündar A
    Artif Organs; 2016 Jan; 40(1):89-94. PubMed ID: 26153848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro elimination of gaseous microemboli utilizing hypobaric oxygenation in the Terumo® FX15 oxygenator.
    Clingan S; Schuldes M; Francis S; Hoerr H; Riley J
    Perfusion; 2016 Oct; 31(7):552-9. PubMed ID: 26993481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a Better Neonatal Extracorporeal Life Support Circuit: Comparison of Hemodynamic Performance and Gaseous Microemboli Handling in Different Pump and Oxygenator Technologies.
    Glass K; Trivedi P; Wang S; Woitas K; Kunselman AR; Ündar A
    Artif Organs; 2017 Apr; 41(4):392-400. PubMed ID: 28397410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line.
    Qiu F; Peng S; Kunselman A; Ündar A
    Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach.
    Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A
    Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC.
    Stanzel RD; Henderson M
    Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass.
    Milano AD; Dodonov M; Onorati F; Menon T; Gottin L; Malerba G; Mazzucco A; Faggian G
    Interact Cardiovasc Thorac Surg; 2013 Nov; 17(5):811-7. PubMed ID: 23842758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaseous microemboli production of bubble and membrane oxygenators.
    Pearson DT; Holden MP; Poslad SJ
    Life Support Syst; 1986; 4 Suppl 1():198-208. PubMed ID: 3747601
    [No Abstract]   [Full Text] [Related]  

  • 17. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: an in vitro study.
    Myers GJ; Voorhees C; Haynes R; Eke B
    J Extra Corpor Technol; 2009 Mar; 41(1):20-7. PubMed ID: 19361028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bubble oxygenator as a source of gaseous microemboli.
    Yost G
    Med Instrum; 1985; 19(2):67-9. PubMed ID: 4000009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs.
    Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS
    Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.