These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 16351066)
1. Combinatorial biomimetics. optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy. Weng YC; Fan FR; Bard AJ J Am Chem Soc; 2005 Dec; 127(50):17576-7. PubMed ID: 16351066 [TBL] [Abstract][Full Text] [Related]
2. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Blankespoor R; Limoges B; Schöllhorn B; Syssa-Magalé JL; Yazidi D Langmuir; 2005 Apr; 21(8):3362-75. PubMed ID: 15807575 [TBL] [Abstract][Full Text] [Related]
3. Triazacyclophane (TAC)-scaffolded histidine and aspartic acid residues as mimics of non-heme metalloenzyme active sites. Albada HB; Soulimani F; Jacobs HJ; Versluis C; Weckhuysen BM; Liskamp RM Org Biomol Chem; 2012 Feb; 10(5):1088-92. PubMed ID: 22179680 [TBL] [Abstract][Full Text] [Related]
4. Zeolite framework stabilized copper complex inspired by the 2-His-1-carboxylate facial triad motif yielding oxidation catalysts. Kervinen K; Bruijnincx PC; Beale AM; Mesu JG; van Koten G; Klein Gebbink RJ; Weckhuysen BM J Am Chem Soc; 2006 Mar; 128(10):3208-17. PubMed ID: 16522101 [TBL] [Abstract][Full Text] [Related]
5. A combinatorial approach to the study of particle size effects on supported electrocatalysts: oxygen reduction on gold. Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP J Comb Chem; 2006; 8(5):679-86. PubMed ID: 16961406 [TBL] [Abstract][Full Text] [Related]
6. Evidence for Cu-O2 intermediates in superoxide oxidations by biomimetic copper(II) complexes. Smirnov VV; Roth JP J Am Chem Soc; 2006 Mar; 128(11):3683-95. PubMed ID: 16536541 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au). Fernández JL; Walsh DA; Bard AJ J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486 [TBL] [Abstract][Full Text] [Related]
9. Optimization of "wired" enzyme O2-electroreduction catalyst compositions by scanning electrochemical microscopy. Fernández JL; Mano N; Heller A; Bard AJ Angew Chem Int Ed Engl; 2004 Nov; 43(46):6355-7. PubMed ID: 15558668 [No Abstract] [Full Text] [Related]
10. Effect of a tridentate ligand on the structure, electronic structure, and reactivity of the copper(I) nitrite complex: role of the conserved three-histidine ligand environment of the type-2 copper site in copper-containing nitrite reductases. Kujime M; Izumi C; Tomura M; Hada M; Fujii H J Am Chem Soc; 2008 May; 130(19):6088-98. PubMed ID: 18412340 [TBL] [Abstract][Full Text] [Related]
11. A stable electrode for high-potential, electrocatalytic O(2) reduction based on rational attachment of a blue copper oxidase to a graphite surface. Blanford CF; Heath RS; Armstrong FA Chem Commun (Camb); 2007 May; (17):1710-2. PubMed ID: 17457416 [TBL] [Abstract][Full Text] [Related]
12. Kinetic and mechanistic studies of the electrocatalytic reduction of O2 TO H2O with mononuclear Cu complexes of substituted 1,10-phenanthrolines. McCrory CC; Ottenwaelder X; Stack TD; Chidsey CE J Phys Chem A; 2007 Dec; 111(49):12641-50. PubMed ID: 18076134 [TBL] [Abstract][Full Text] [Related]
13. New copper(II)/cyclic tetrapeptide system that easily oxidizes to copper(III) under atmospheric oxygen. Pratesi A; Zanello P; Giorgi G; Messori L; Laschi F; Casini A; Corsini M; Gabbiani C; Orfei M; Rosani C; Ginanneschi M Inorg Chem; 2007 Nov; 46(24):10038-40. PubMed ID: 17979273 [TBL] [Abstract][Full Text] [Related]
14. A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolite-modified electrode. Rohani T; Taher MA Talanta; 2009 May; 78(3):743-7. PubMed ID: 19269422 [TBL] [Abstract][Full Text] [Related]
15. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186 [TBL] [Abstract][Full Text] [Related]
16. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Jung C; Sánchez-Sánchez CM; Lin CL; Rodríguez-López J; Bard AJ Anal Chem; 2009 Aug; 81(16):7003-8. PubMed ID: 19627121 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical detection of scDNA cleavage in the presence of macrocyclic hexaaza-copper(II) complex. Kang J; Dong S; Lu X; Su B; Wu H; Sun K Bioelectrochemistry; 2006 Sep; 69(1):58-64. PubMed ID: 16427814 [TBL] [Abstract][Full Text] [Related]
18. Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol-porphyrin monolayers on gold using SECM and nanoelectrodes. Mezour MA; Cornut R; Hussien EM; Morin M; Mauzeroll J Langmuir; 2010 Aug; 26(15):13000-6. PubMed ID: 20614910 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of [Cu(bpy)2]Br2 complex onto a glassy carbon electrode modified with alpha-SiMo12O40(4-) and single walled carbon nanotubes: application to nanomolar detection of hydrogen peroxide and bromate. Salimi A; Korani A; Hallaj R; Khoshnavazi R; Hadadzadeh H Anal Chim Acta; 2009 Mar; 635(1):63-70. PubMed ID: 19200480 [TBL] [Abstract][Full Text] [Related]
20. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Liu JG; Naruta Y; Tani F Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]