BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16351167)

  • 1. Simultaneous observation of enzyme surface diffusion and surface reaction using microfluidic patterning of substrate surfaces.
    Roy S; Thomas JM; Holmes EA; Kellis JT; Poulose AJ; Robertson CR; Gast AP
    Anal Chem; 2005 Dec; 77(24):8146-50. PubMed ID: 16351167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2010 Dec; 26(24):18916-25. PubMed ID: 21080656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility of Thermomyces lanuginosus lipase on a trimyristin substrate surface.
    Sonesson AW; Brismar H; Callisen TH; Elofsson UM
    Langmuir; 2007 Feb; 23(5):2706-13. PubMed ID: 17261037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of kinetic parameters, Km and kcat, with a single experiment on a chip.
    Jambovane S; Duin EC; Kim SK; Hong JW
    Anal Chem; 2009 May; 81(9):3239-45. PubMed ID: 19338287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks.
    Jiang X; Xu Q; Dertinger SK; Stroock AD; Fu TM; Whitesides GM
    Anal Chem; 2005 Apr; 77(8):2338-47. PubMed ID: 15828766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning adjacent supported lipid bilayers of desired composition to investigate receptor-ligand binding under shear flow.
    Burridge KA; Figa MA; Wong JY
    Langmuir; 2004 Nov; 20(23):10252-9. PubMed ID: 15518521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for characterizing adsorption of flowing solutes to microfluidic device surfaces.
    Hawkins KR; Steedman MR; Baldwin RR; Fu E; Ghosal S; Yager P
    Lab Chip; 2007 Feb; 7(2):281-5. PubMed ID: 17268632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linearity and dissociative antigen noise analyses of competitive microfluidic heterogeneous immunoadsorption.
    Zhao S; Wang W; Li Z
    Biomed Microdevices; 2008 Aug; 10(4):519-29. PubMed ID: 18219578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-directed capillary system; theory, experiments and applications.
    Bouaidat S; Hansen O; Bruus H; Berendsen C; Bau-Madsen NK; Thomsen P; Wolff A; Jonsmann J
    Lab Chip; 2005 Aug; 5(8):827-36. PubMed ID: 16027933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic electrochemical sensor array for characterizing protein interactions with various functionalized surfaces.
    Dykstra PH; Roy V; Byrd C; Bentley WE; Ghodssi R
    Anal Chem; 2011 Aug; 83(15):5920-7. PubMed ID: 21688780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions.
    Logan TC; Clark DS; Stachowiak TB; Svec F; Fréchet JM
    Anal Chem; 2007 Sep; 79(17):6592-8. PubMed ID: 17658765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution.
    Wu N; Courtois F; Zhu Y; Oakeshott J; Easton C; Abell C
    Electrophoresis; 2010 Sep; 31(18):3121-8. PubMed ID: 20803501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and mobility of a lipase at a hydrophobic surface in the presence of surfactants.
    Sonesson AW; Elofsson UM; Brismar H; Callisen TH
    Langmuir; 2006 Jun; 22(13):5810-7. PubMed ID: 16768512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein diffusion across the interface in aqueous two-phase systems.
    Münchow G; Schönfeld F; Hardt S; Graf K
    Langmuir; 2008 Aug; 24(16):8547-53. PubMed ID: 18630980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand patterning of protein matrixes inside a microfluidic device.
    Kaji H; Hashimoto M; Nishizawa M
    Anal Chem; 2006 Aug; 78(15):5469-73. PubMed ID: 16878884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobicity for antifouling microfluidic surfaces.
    Shirtcliffe NJ; Roach P
    Methods Mol Biol; 2013; 949():269-81. PubMed ID: 23329449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.
    Kurita R; Yokota Y; Sato Y; Mizutani F; Niwa O
    Anal Chem; 2006 Aug; 78(15):5525-31. PubMed ID: 16878891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and diffusion of plasma proteins on hydrophilic and hydrophobic surfaces: effect of trifluoroethanol on protein structure.
    Vieira EP; Rocha S; Carmo Pereira M; Möhwald H; Coelho MA
    Langmuir; 2009 Sep; 25(17):9879-86. PubMed ID: 19705886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.