These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16351285)

  • 1. Single particle versus ensemble average: from power-law intermittency of a single quantum dot to quasistretched exponential fluorescence decay of an ensemble.
    Tang J; Marcus RA
    J Chem Phys; 2005 Nov; 123(20):204511. PubMed ID: 16351285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of energetics and kinetics from single-particle intermittency and ensemble-averaged fluorescence intensity decay of quantum dots.
    Tang J; Marcus RA
    J Chem Phys; 2006 Jul; 125(4):44703. PubMed ID: 16942170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots.
    Tang J; Marcus RA
    J Chem Phys; 2005 Aug; 123(5):054704. PubMed ID: 16108682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonexponential relaxation of poly(cyclohexyl acrylate): comparison of single-molecule and ensemble fluorescence studies.
    Wei CY; Vanden Bout DA
    J Phys Chem B; 2009 Feb; 113(8):2253-61. PubMed ID: 19199699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles.
    Tang J; Marcus RA
    Phys Rev Lett; 2005 Sep; 95(10):107401. PubMed ID: 16196963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-time power-law blinking statistics of single quantum dots and a test of the diffusion-controlled electron transfer model.
    Tang J; Lee DH; Yeh YC; Yuan CT
    J Chem Phys; 2009 Aug; 131(6):064506. PubMed ID: 19691396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence intermittency of silicon nanocrystals and other quantum dots: a unified two-dimensional diffusion-controlled reaction model.
    Tang J
    J Chem Phys; 2007 Sep; 127(11):111105. PubMed ID: 17887820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.
    Bachir AI; Kolin DL; Heinze KG; Hebert B; Wiseman PW
    J Chem Phys; 2008 Jun; 128(22):225105. PubMed ID: 18554062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size effects and breakdown of the power-law blinking statistics of CdSe nanorods.
    Tang J
    J Phys Chem A; 2007 Sep; 111(38):9336-9. PubMed ID: 17718457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of anomalous diffusion on power-law blinking statistics of CdSe nanorods.
    Tang J
    J Chem Phys; 2008 Aug; 129(8):084709. PubMed ID: 19044843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonexponential statistics of fluorescence photobleaching.
    Berglund AJ
    J Chem Phys; 2004 Aug; 121(7):2899-903. PubMed ID: 15291600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceleration of electron-transfer-induced fluorescence quenching upon conversion to the signaling state in the blue-light receptor, TePixD, from Thermosynechococcus elongatus.
    Shibata Y; Murai Y; Satoh Y; Fukushima Y; Okajima K; Ikeuchi M; Itoh S
    J Phys Chem B; 2009 Jun; 113(23):8192-8. PubMed ID: 19449828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-induced control of universal fluorescence intermittency of a quantum dot light emitter.
    Lee JD; Maenosono S
    J Chem Phys; 2010 Aug; 133(7):074703. PubMed ID: 20726659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion.
    Komoto A; Maenosono S
    J Chem Phys; 2006 Sep; 125(11):114705. PubMed ID: 16999499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-phase single quantum dot fluorescence resonance energy transfer.
    Pons T; Medintz IL; Wang X; English DS; Mattoussi H
    J Am Chem Soc; 2006 Nov; 128(47):15324-31. PubMed ID: 17117885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of fluorescence intermittency in single enzymes.
    Chaudhury S; Kou SC; Cherayil BJ
    J Phys Chem B; 2007 Mar; 111(9):2377-84. PubMed ID: 17288472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientational dynamics in the isotropic phase of a calamitic liquid-crystal model.
    Bertolini D; Cinacchi G; De Gaetani L; Tani A
    J Phys Chem B; 2005 Dec; 109(51):24480-8. PubMed ID: 16375451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.
    Kuzmin MG; Soboleva IV; Dolotova EV
    J Phys Chem A; 2007 Jan; 111(2):206-15. PubMed ID: 17214455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.