These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 16351712)
1. Prediction of MHC class II binding peptides based on an iterative learning model. Murugan N; Dai Y Immunome Res; 2005 Dec; 1():6. PubMed ID: 16351712 [TBL] [Abstract][Full Text] [Related]
2. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912 [TBL] [Abstract][Full Text] [Related]
3. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method. He J; Yang G; Rao H; Li Z; Ding X; Chen Y Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095 [TBL] [Abstract][Full Text] [Related]
4. Prediction of MHC class II binders using the ant colony search strategy. Karpenko O; Shi J; Dai Y Artif Intell Med; 2005; 35(1-2):147-56. PubMed ID: 16061368 [TBL] [Abstract][Full Text] [Related]
5. Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network. Singh SP; Mishra BN Bioinformation; 2008; 3(4):150-5. PubMed ID: 19238237 [TBL] [Abstract][Full Text] [Related]
6. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. Zhao W; Sher X PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041 [TBL] [Abstract][Full Text] [Related]
7. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
8. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Bordner AJ; Abagyan R Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819 [TBL] [Abstract][Full Text] [Related]
9. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design. Moghram BA; Nabil E; Badr A Comput Methods Programs Biomed; 2018 Jan; 153():161-170. PubMed ID: 29157448 [TBL] [Abstract][Full Text] [Related]
10. USMPep: universal sequence models for major histocompatibility complex binding affinity prediction. Vielhaben J; Wenzel M; Samek W; Strodthoff N BMC Bioinformatics; 2020 Jul; 21(1):279. PubMed ID: 32615972 [TBL] [Abstract][Full Text] [Related]
11. MHC2MIL: a novel multiple instance learning based method for MHC-II peptide binding prediction by considering peptide flanking region and residue positions. Xu Y; Luo C; Qian M; Huang X; Zhu S BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25521198 [TBL] [Abstract][Full Text] [Related]
12. Accurate prediction of major histocompatibility complex class II epitopes by sparse representation via ℓ 1-minimization. Aguilar-Bonavides C; Sanchez-Arias R; Lanzas C BioData Min; 2014; 7():23. PubMed ID: 25392716 [TBL] [Abstract][Full Text] [Related]
13. Improving peptide-MHC class I binding prediction for unbalanced datasets. Sales AP; Tomaras GD; Kepler TB BMC Bioinformatics; 2008 Sep; 9():385. PubMed ID: 18803836 [TBL] [Abstract][Full Text] [Related]
17. The Utility of Supertype Clustering in Prediction for Class II MHC-Peptide Binding. Shen WJ; Zhang X; Zhang S; Liu C; Cui W Molecules; 2018 Nov; 23(11):. PubMed ID: 30463372 [TBL] [Abstract][Full Text] [Related]
18. Prediction of Major Histocompatibility Complex Binding with Bilateral and Variable Long Short Term Memory Networks. Jiang L; Tang J; Guo F; Guo Y Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741369 [TBL] [Abstract][Full Text] [Related]
19. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Nielsen M; Andreatta M Genome Med; 2016 Mar; 8(1):33. PubMed ID: 27029192 [TBL] [Abstract][Full Text] [Related]
20. Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data. Garde C; Ramarathinam SH; Jappe EC; Nielsen M; Kringelum JV; Trolle T; Purcell AW Immunogenetics; 2019 Jul; 71(7):445-454. PubMed ID: 31183519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]