BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 16352293)

  • 1. Localization of GABA (gamma-aminobutyric acid) markers in the turtle's basal optic nucleus.
    Martin J; Ariel M
    Brain Res; 2005 Dec; 1066(1-2):109-19. PubMed ID: 16352293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for GABAergic interneurons in the red nucleus of the painted turtle.
    Keifer J; Vyas D; Houk JC; Berrebi AS; Mugnaini E
    Synapse; 1992 Jul; 11(3):197-213. PubMed ID: 1636150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of GABA type A signaling in adult medial habenular neurons.
    Wang DG; Gong N; Luo B; Xu TL
    Neuroscience; 2006 Aug; 141(1):133-41. PubMed ID: 16675141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A local GABAergic system within rat trigeminal ganglion cells.
    Hayasaki H; Sohma Y; Kanbara K; Maemura K; Kubota T; Watanabe M
    Eur J Neurosci; 2006 Feb; 23(3):745-57. PubMed ID: 16487155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus.
    Freichel C; Potschka H; Ebert U; Brandt C; Löscher W
    Neuroscience; 2006 Sep; 141(4):2177-94. PubMed ID: 16797850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous expression of gamma-aminobutyric acid and gamma-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus.
    Belenky MA; Yarom Y; Pickard GE
    J Comp Neurol; 2008 Feb; 506(4):708-32. PubMed ID: 18067149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic pharmacology in the turtle accessory optic system.
    Kogo N; Fan TX; Ariel M
    Exp Brain Res; 2002 Dec; 147(4):464-72. PubMed ID: 12444478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electron microscope immunocytochemical study of GABA(B) R2 receptors in the monkey basal ganglia: a comparative analysis with GABA(B) R1 receptor distribution.
    Charara A; Galvan A; Kuwajima M; Hall RA; Smith Y
    J Comp Neurol; 2004 Aug; 476(1):65-79. PubMed ID: 15236467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex.
    Blanton MG; Shen JM; Kriegstein AR
    J Comp Neurol; 1987 May; 259(2):277-97. PubMed ID: 2438317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential localization of two glutamic acid decarboxylases (GAD65 and GAD67) in adult monkey visual cortex.
    Hendrickson AE; Tillakaratne NJ; Mehra RD; Esclapez M; Erickson A; Vician L; Tobin AJ
    J Comp Neurol; 1994 May; 343(4):566-81. PubMed ID: 8034788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental expression of glutamic acid decarboxylase and of gamma-aminobutyric acid type B receptors in the ascidian Ciona intestinalis.
    Zega G; Biggiogero M; Groppelli S; Candiani S; Oliveri D; Parodi M; Pestarino M; De Bernardi F; Pennati R
    J Comp Neurol; 2008 Jan; 506(3):489-505. PubMed ID: 18041772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbit.
    Penny GR; Conley M; Schmechel DE; Diamond IT
    J Comp Neurol; 1984 Sep; 228(1):38-56. PubMed ID: 6090511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAergic basal forebrain neurons that express receptor for neurokinin B and send axons to the cerebral cortex.
    Furuta T; Koyano K; Tomioka R; Yanagawa Y; Kaneko T
    J Comp Neurol; 2004 May; 473(1):43-58. PubMed ID: 15067717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of GABAergic neurons and terminals in the auditory system of the barn owl.
    Carr CE; Fujita I; Konishi M
    J Comp Neurol; 1989 Aug; 286(2):190-207. PubMed ID: 2794115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes of GABAergic synapses formed between primary cultured cortical neurons.
    Kato-Negishi M; Muramoto K; Kawahara M; Kuroda Y; Ichikawa M
    Brain Res Dev Brain Res; 2004 Sep; 152(2):99-108. PubMed ID: 15351497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal and non-axonal immunolocalization of cytosolic aspartate aminotransferase (cAATase), GABA and glutamic acid decarboxylase (GAD) in the rat cochlear nucleus.
    Martinez-Rodriguez R; Najera ML; Gragera RR; Tonda A; Gonzalez-Romero FJ; Fernandez AM; Alonso MJ; Lopez-Bravo A
    J Hirnforsch; 1992; 33(6):637-44. PubMed ID: 1494041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological development and maturation of the GABAergic synapses in the mouse cerebellar granular layer.
    Takayama C; Inoue Y
    Brain Res Dev Brain Res; 2004 Jun; 150(2):177-90. PubMed ID: 15158081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of GAD-like immunoreactivity in the retina and central visual system of Rana pipiens.
    Tyler CJ; Fite KV; Devries GJ
    J Comp Neurol; 1995 Mar; 353(3):439-50. PubMed ID: 7751441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): a biochemical and immunohistochemical approach.
    Girosi L; Ferrando S; Beltrame F; Ciarcia G; Diaspro A; Fato M; Magnone M; Raiteri L; Ramoino P; Tagliafierro G
    Cell Tissue Res; 2007 Jul; 329(1):187-96. PubMed ID: 17429697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An immunohistochemical study on a unique colocalization relationship between substance P and GABA in the central nucleus of amygdala.
    Shigematsu N; Yamamoto K; Higuchi S; Fukuda T
    Brain Res; 2008 Mar; 1198():55-67. PubMed ID: 18243164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.