These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16352329)

  • 1. Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives.
    Sietmann R; Gesell M; Hammer E; Schauer F
    Chemosphere; 2006 Jul; 64(4):672-85. PubMed ID: 16352329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation and ring cleavage of dibenzofuran by the filamentous fungus Paecilomyces lilacinus.
    Gesell M; Hammer E; Mikolasch A; Schauer F
    Arch Microbiol; 2004 Sep; 182(1):51-9. PubMed ID: 15278240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products.
    Gesell M; Hammer E; Specht M; Francke W; Schauer F
    Appl Environ Microbiol; 2001 Apr; 67(4):1551-7. PubMed ID: 11282604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Specht M; Cerniglia CE; Schauer F
    Appl Environ Microbiol; 2001 Sep; 67(9):4158-65. PubMed ID: 11526019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial transformation and degradation of polychlorinated biphenyls.
    Field JA; Sierra-Alvarez R
    Environ Pollut; 2008 Sep; 155(1):1-12. PubMed ID: 18035460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel insights into the fungal oxidation of monoaromatic and biarylic environmental pollutants by characterization of two new ring cleavage enzymes.
    Schlüter R; Lippmann R; Hammer E; Gesell Salazar M; Schauer F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5043-53. PubMed ID: 23400446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenyls].
    Rybkina DO; Plotnikova EG; Dorofeeva LV; Mironenko IuL; Demakov VA
    Mikrobiologiia; 2003; 72(6):759-65. PubMed ID: 14768541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylation of biphenyl by the yeast Trichosporon mucoides.
    Sietmann R; Hammer E; Moody J; Cerniglia CE; Schauer F
    Arch Microbiol; 2000 Nov; 174(5):353-61. PubMed ID: 11131026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive dechlorination of chlorinated biphenyls by palladized zero-valent metals.
    Kim YH; Shin WS; Ko SO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(5):1177-88. PubMed ID: 15137691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dechlorination of PCBs by electrochemical reduction with aromatic radical anion as mediator.
    Matsunaga A; Yasuhara A
    Chemosphere; 2005 Feb; 58(7):897-904. PubMed ID: 15639261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of biarylic compounds by yeasts of the genus trichosporon.
    Sietmann R; Hammer E; Schauer F
    Syst Appl Microbiol; 2002 Oct; 25(3):332-9. PubMed ID: 12421071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of aerobic utilization of di-ortho-substituted trichlorobiphenyls as growth substrates by Pseudomonas sp. SA-6 and Ralstonia sp. SA-4.
    Adebusoye SA; Picardal FW; Ilori MO; Amund OO
    Environ Microbiol; 2008 May; 10(5):1165-74. PubMed ID: 18248454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of Doubly para-Substituted Hydroxychlorobiphenyls by Bacterial Biphenyl Dioxygenases.
    Pham TT; Sondossi M; Sylvestre M
    Appl Environ Microbiol; 2015 Jul; 81(14):4860-72. PubMed ID: 25956777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of anaerobic and aerobic processes on polychlorobiphenyl removal in contaminated sewage sludge.
    Patureau D; Trably E
    Biodegradation; 2006 Feb; 17(1):9-17. PubMed ID: 16453167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bioremediation of soils and sediments polluted by polychlorinated biphenyls].
    Vasil'eva GK; Strizhakova ER
    Mikrobiologiia; 2007; 76(6):725-41. PubMed ID: 18297863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of comprehensive polychlorinated biphenyl degrading bacterium, Enterobacter sp. LY402.
    Jia LY; Zheng AP; Xu L; Huang XD; Zhang Q; Yang FL
    J Microbiol Biotechnol; 2008 May; 18(5):952-7. PubMed ID: 18633297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial reductive dechlorination of weathered and exogenous co-planar polychlorinated biphenyls (PCBs) in an anaerobic sediment of Venice Lagoon.
    Zanaroli G; Pérez-Jiménez JR; Young LY; Marchetti L; Fava F
    Biodegradation; 2006 Mar; 17(2):121-9. PubMed ID: 16477348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142.
    Kamei I; Kogura R; Kondo R
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):566-75. PubMed ID: 16528513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls.
    Chávez FP; Gordillo F; Jerez CA
    Biotechnol Adv; 2006; 24(3):309-20. PubMed ID: 16413162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.