These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16352434)

  • 61. A murine model of communicating hydrocephalus: Role of TGF-beta1.
    Kanaji M; Tada T; Kobayashi S
    J Clin Neurosci; 1997 Jan; 4(1):51-6. PubMed ID: 18638924
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An experimental model of communicating hydrocephalus in C57 black mouse.
    Kanno T; Nakamura T; Jain VK; Sugimoto T
    Acta Neurochir (Wien); 1987; 86(3-4):111-4. PubMed ID: 3630781
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A MATHEMATICAL ANALYSIS OF PHYSIOLOGICAL AND MOLECULAR MECHANISMS THAT MODULATE PRESSURE GRADIENTS AND FACILITATE VENTRICULAR EXPANSION IN HYDROCEPHALUS.
    Wilkie KP; Nagra G; Johnston M
    Int J Numer Anal Model B; 2012; 316():65-81. PubMed ID: 25678938
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Prospects of medical treatment in communicating congenital hydrocephalus].
    Gueli U; Lato M; Cagini P
    Minerva Pediatr; 1976 Jul; 28(24):1530-5. PubMed ID: 1012195
    [No Abstract]   [Full Text] [Related]  

  • 65. Hydrocephalus: historical analysis and considerations for treatment.
    Hochstetler A; Raskin J; Blazer-Yost BL
    Eur J Med Res; 2022 Sep; 27(1):168. PubMed ID: 36050779
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Decreased MiR-30a promotes TGF-β1-mediated arachnoid fibrosis in post-hemorrhagic hydrocephalus.
    Zhan C; Xiao G; Zhang X; Chen X; Zhang Z; Liu J
    Transl Neurosci; 2020; 11(1):60-74. PubMed ID: 33335750
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Sphingosine-1-Phosphate Receptor Modulator Attenuated Secondary Brain Injury and Improved Neurological Functions of Mice after ICH.
    Bobinger T; Bäuerle T; Seyler L; V Horsten S; Schwab S; Huttner HB; Manaenko A
    Oxid Med Cell Longev; 2020; 2020():3214350. PubMed ID: 32963692
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multipotent Neurotrophic Effects of Hepatocyte Growth Factor in Spinal Cord Injury.
    Yamane K; Misawa H; Takigawa T; Ito Y; Ozaki T; Matsukawa A
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31810304
    [TBL] [Abstract][Full Text] [Related]  

  • 69. HGF-Met Pathway in Regeneration and Drug Discovery.
    Matsumoto K; Funakoshi H; Takahashi H; Sakai K
    Biomedicines; 2014 Oct; 2(4):275-300. PubMed ID: 28548072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review.
    Del Bigio MR; Di Curzio DL
    Fluids Barriers CNS; 2016 Feb; 13():3. PubMed ID: 26846184
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Importance of the brain Angiotensin system in Parkinson's disease.
    Wright JW; Harding JW
    Parkinsons Dis; 2012; 2012():860923. PubMed ID: 23213621
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases.
    Wright JW; Harding JW
    Pflugers Arch; 2013 Jan; 465(1):133-51. PubMed ID: 22535332
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The expression of twisted gastrulation in postnatal mouse brain and functional implications.
    Sun M; Forsman C; Sergi C; Gopalakrishnan R; O'Connor MB; Petryk A
    Neuroscience; 2010 Aug; 169(2):920-31. PubMed ID: 20493240
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets.
    Wright JW; Yamamoto BJ; Harding JW
    Prog Neurobiol; 2008 Feb; 84(2):157-81. PubMed ID: 18160199
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice.
    Dai C; Yang J; Bastacky S; Xia J; Li Y; Liu Y
    J Am Soc Nephrol; 2004 Oct; 15(10):2637-47. PubMed ID: 15466268
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Decorin prevents the development of juvenile communicating hydrocephalus.
    Botfield H; Gonzalez AM; Abdullah O; Skjolding AD; Berry M; McAllister JP; Logan A
    Brain; 2013 Sep; 136(Pt 9):2842-58. PubMed ID: 23983032
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ultrastructural analysis of a murine model of congenital hydrocephalus produced by overexpression of transforming growth factor-beta1 in the central nervous system.
    Aliev G; Miller JP; Leifer DW; Obrenovich ME; Shenk JC; Smith MA; Lamanna JC; Perry G; Lust DW; Cohen AR
    J Submicrosc Cytol Pathol; 2006; 38(2-3):85-91. PubMed ID: 17784635
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Normal pressure hydrocephalus after subarachnoid hemorrhage and TGF-beta1 induced mouse hydrocephalus].
    Tada T; Hongo K
    No Shinkei Geka; 2005 Aug; 33(8):751-7. PubMed ID: 16095205
    [No Abstract]   [Full Text] [Related]  

  • 79. Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1.
    Tada T; Zhan H; Tanaka Y; Hongo K; Matsumoto K; Nakamura T
    Neurobiol Dis; 2006 Mar; 21(3):576-86. PubMed ID: 16352434
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.