BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16352440)

  • 1. In situ generation of HCN for mass spectrometric studies.
    Chacko SA; Krouse IH; Hammad LA; Wenthold PG
    J Am Soc Mass Spectrom; 2006 Jan; 17(1):51-55. PubMed ID: 16352440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collision-induced dissociation of HS-(HCN): unsymmetrical hydrogen bonding in a proton-bound dimer anion.
    Akin FA; Ervin KM
    J Phys Chem A; 2006 Feb; 110(4):1342-9. PubMed ID: 16435794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substituent effects on noncovalent bonds: complexes of ionized benzene derivatives with hydrogen cyanide.
    Attah IK; Hamid AM; Meot-Ner Mautner M; El-Shall MS; Aziz SG; Alyoubi AO
    J Phys Chem A; 2013 Oct; 117(41):10588-97. PubMed ID: 24024653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collisionally-induced dissociation of purine antiviral agents: mechanisms of ion formation using gas phase hydrogen/deuterium exchange and electrospray ionization tandem mass spectrometry.
    Kamel AM; Munson B
    Eur J Mass Spectrom (Chichester); 2004; 10(2):239-57. PubMed ID: 15103102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmentation of adenine under energy control.
    Brédy R; Bernard JM; Chen L; Montagne G; Li B; Martin S
    J Chem Phys; 2009 Mar; 130(11):114305. PubMed ID: 19317537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salts of HCN-Cyanide Aggregates: [CN(HCN)
    Bläsing K; Harloff J; Schulz A; Stoffers A; Stoer P; Villinger A
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10508-10513. PubMed ID: 32027458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bond dissociation energy and Lewis acidity of the xenon fluoride cation.
    Krouse IH; Wenthold PG
    Inorg Chem; 2003 Jul; 42(14):4293-8. PubMed ID: 12844301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise association of hydrogen cyanide and acetonitrile with the benzene radical cation: structures and binding energies of (C6H6•+)(HCN)n, n = 1-6, and (C6H6•+)(CH3CN)n, n = 1-4, clusters.
    Hamid AM; Soliman AR; El-Shall MS
    J Phys Chem A; 2013 Feb; 117(6):1069-78. PubMed ID: 22671581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unearthing the mechanism of prebiotic nitrile bond reduction in hydrogen cyanide through a curious association of two molecular radical anions.
    Banerjee A; Ganguly G; Tripathi R; Nair NN; Paul A
    Chemistry; 2014 May; 20(21):6348-57. PubMed ID: 24715469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconventional CH(δ+)···N hydrogen bonding interactions in the stepwise solvation of the naphthalene radical cation by hydrogen cyanide and acetonitrile molecules.
    Platt SP; Attah IK; El-Shall MS; Hilal R; Elroby SA; Aziz SG
    Phys Chem Chem Phys; 2016 Jan; 18(4):2580-90. PubMed ID: 26700190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.
    Hamid AM; El-Shall MS; Hilal R; Elroby S; Aziz SG
    J Chem Phys; 2014 Aug; 141(5):054305. PubMed ID: 25106585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision-induced dissociation (CID) of guanine radical cation in the gas phase: an experimental and computational study.
    Cheng P; Li Y; Li S; Zhang M; Zhou Z
    Phys Chem Chem Phys; 2010 May; 12(18):4667-77. PubMed ID: 20428546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient purification of hydrogen cyanide by synergistic effects of electrochemical and liquid phase catalysis.
    Li Z; Chen B; Li J; Qu G; Ning P; Ma X; Xie R
    Ecotoxicol Environ Saf; 2021 Dec; 225():112784. PubMed ID: 34537588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of Pseudomonas aeruginosa hydrogen cyanide production by a polarographic approach.
    Blier AS; Vieillard J; Gerault E; Dagorn A; Varacavoudin T; Le Derf F; Orange N; Feuilloley M; Lesouhaitier O
    J Microbiol Methods; 2012 Jul; 90(1):20-4. PubMed ID: 22537820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide.
    Shea C; Alexoff DL; Kim D; Hoque R; Schueller MJ; Fowler JS; Qu W
    Appl Radiat Isot; 2015 Aug; 102():48-54. PubMed ID: 25980658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n- (n=3, 4).
    Wu D; Li Y; Li Z; Chen W; Li ZR; Sun CC
    J Chem Phys; 2006 Feb; 124(5):054310. PubMed ID: 16468872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isomerization and dissociation of C2X5+ and C2X4+* ions (X = Cl, F) from chlorofluoroethanes in an ion trap mass spectrometer.
    Marotta E; Paradisi C
    J Mass Spectrom; 2002 Dec; 37(12):1280-6. PubMed ID: 12489089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem mass spectrometric characterization of bile acids and steroid conjugates based on low-energy collision-induced dissociation.
    Maekawa M; Shimada M; Iida T; Goto J; Mano N
    Steroids; 2014 Feb; 80():80-91. PubMed ID: 24296272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa.
    Gilchrist FJ; Alcock A; Belcher J; Brady M; Jones A; Smith D; Spanĕl P; Webb K; Lenney W
    Eur Respir J; 2011 Aug; 38(2):409-14. PubMed ID: 21273393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intriguing mass spectrometric behavior of guanosine under low energy collision-induced dissociation: H2O adduct formation and gas-phase reactions in the collision cell.
    Tuytten R; Lemière F; Van Dongen W; Esmans EL; Witters E; Herrebout W; Van Der Veken B; Dudley E; Newton RP
    J Am Soc Mass Spectrom; 2005 Aug; 16(8):1291-304. PubMed ID: 15979336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.