These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 16352821)
1. Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. Vegge CS; Vogensen FK; Mc Grath S; Neve H; van Sinderen D; Brøndsted L J Bacteriol; 2006 Jan; 188(1):55-63. PubMed ID: 16352821 [TBL] [Abstract][Full Text] [Related]
2. The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. Legrand P; Collins B; Blangy S; Murphy J; Spinelli S; Gutierrez C; Richet N; Kellenberger C; Desmyter A; Mahony J; van Sinderen D; Cambillau C mBio; 2016 Jan; 7(1):e01781-15. PubMed ID: 26814179 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901-1. Vegge CS; Brøndsted L; Neve H; Mc Grath S; van Sinderen D; Vogensen FK J Bacteriol; 2005 Jun; 187(12):4187-97. PubMed ID: 15937180 [TBL] [Abstract][Full Text] [Related]
4. Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Pedersen M; Ostergaard S; Bresciani J; Vogensen FK Virology; 2000 Oct; 276(2):315-28. PubMed ID: 11040123 [TBL] [Abstract][Full Text] [Related]
5. Structure and functional analysis of the host recognition device of lactococcal phage tuc2009. Collins B; Bebeacua C; Mahony J; Blangy S; Douillard FP; Veesler D; Cambillau C; van Sinderen D J Virol; 2013 Aug; 87(15):8429-40. PubMed ID: 23698314 [TBL] [Abstract][Full Text] [Related]
6. Identification of DNA-binding sites for the activator involved in late transcription of the temperate lactococcal phage TP901-1. Pedersen M; Kilstrup M; Hammer K Virology; 2006 Feb; 345(2):446-56. PubMed ID: 16297953 [TBL] [Abstract][Full Text] [Related]
7. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis. Labrie SJ; Josephsen J; Neve H; Vogensen FK; Moineau S Appl Environ Microbiol; 2008 Aug; 74(15):4636-44. PubMed ID: 18539805 [TBL] [Abstract][Full Text] [Related]
8. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. Bebeacua C; Bron P; Lai L; Vegge CS; Brøndsted L; Spinelli S; Campanacci V; Veesler D; van Heel M; Cambillau C J Biol Chem; 2010 Dec; 285(50):39079-86. PubMed ID: 20937834 [TBL] [Abstract][Full Text] [Related]
9. Anatomy of a lactococcal phage tail. Mc Grath S; Neve H; Seegers JF; Eijlander R; Vegge CS; Brøndsted L; Heller KJ; Fitzgerald GF; Vogensen FK; van Sinderen D J Bacteriol; 2006 Jun; 188(11):3972-82. PubMed ID: 16707689 [TBL] [Abstract][Full Text] [Related]
10. The Ruiz-Cruz S; Erazo Garzon A; Cambillau C; Ortiz Charneco G; Lugli GA; Ventura M; Mahony J; van Sinderen D Appl Environ Microbiol; 2024 Sep; 90(9):e0069424. PubMed ID: 39132999 [TBL] [Abstract][Full Text] [Related]
11. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. Stockdale SR; Mahony J; Courtin P; Chapot-Chartier MP; van Pijkeren JP; Britton RA; Neve H; Heller KJ; Aideh B; Vogensen FK; van Sinderen D J Biol Chem; 2013 Feb; 288(8):5581-90. PubMed ID: 23300085 [TBL] [Abstract][Full Text] [Related]
12. A topological model of the baseplate of lactococcal phage Tuc2009. Sciara G; Blangy S; Siponen M; Mc Grath S; van Sinderen D; Tegoni M; Cambillau C; Campanacci V J Biol Chem; 2008 Feb; 283(5):2716-23. PubMed ID: 18045876 [TBL] [Abstract][Full Text] [Related]
13. Viral infection modulation and neutralization by camelid nanobodies. Desmyter A; Farenc C; Mahony J; Spinelli S; Bebeacua C; Blangy S; Veesler D; van Sinderen D; Cambillau C Proc Natl Acad Sci U S A; 2013 Apr; 110(15):E1371-9. PubMed ID: 23530214 [TBL] [Abstract][Full Text] [Related]
14. Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Veesler D; Spinelli S; Mahony J; Lichière J; Blangy S; Bricogne G; Legrand P; Ortiz-Lombardia M; Campanacci V; van Sinderen D; Cambillau C Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8954-8. PubMed ID: 22611190 [TBL] [Abstract][Full Text] [Related]
15. Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. Bebeacua C; Lai L; Vegge CS; Brøndsted L; van Heel M; Veesler D; Cambillau C J Virol; 2013 Jan; 87(2):1061-8. PubMed ID: 23135714 [TBL] [Abstract][Full Text] [Related]
16. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Brøndsted L; Hammer K Appl Environ Microbiol; 1999 Feb; 65(2):752-8. PubMed ID: 9925612 [TBL] [Abstract][Full Text] [Related]
17. Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. Campanacci V; Veesler D; Lichière J; Blangy S; Sciara G; Moineau S; van Sinderen D; Bron P; Cambillau C J Struct Biol; 2010 Oct; 172(1):75-84. PubMed ID: 20153432 [TBL] [Abstract][Full Text] [Related]
18. Temperate phages TP901-1 and phiLC3, belonging to the P335 species, apparently use different pathways for DNA injection in Lactococcus lactis subsp. cremoris 3107. Ostergaard Breum S; Neve H; Heller KJ; Vogensen FK FEMS Microbiol Lett; 2007 Nov; 276(2):156-64. PubMed ID: 17956421 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the lytic-lysogenic switch of the lactococcal bacteriophage Tuc2009. Kenny JG; Leach S; de la Hoz AB; Venema G; Kok J; Fitzgerald GF; Nauta A; Alonso JC; van Sinderen D Virology; 2006 Apr; 347(2):434-46. PubMed ID: 16410016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]