BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16352834)

  • 1. CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes.
    Kim HJ; Mittal M; Sonenshein AL
    J Bacteriol; 2006 Jan; 188(1):179-90. PubMed ID: 16352834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual role of CcpC protein in regulation of aconitase gene expression in Listeria monocytogenes and Bacillus subtilis.
    Mittal M; Pechter KB; Picossi S; Kim HJ; Kerstein KO; Sonenshein AL
    Microbiology (Reading); 2013 Jan; 159(Pt 1):68-76. PubMed ID: 23139400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis.
    Jourlin-Castelli C; Mani N; Nakano MM; Sonenshein AL
    J Mol Biol; 2000 Jan; 295(4):865-78. PubMed ID: 10656796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex regulation of the Bacillus subtilis aconitase gene.
    Kim HJ; Kim SI; Ratnayake-Lecamwasam M; Tachikawa K; Sonenshein AL; Strauch M
    J Bacteriol; 2003 Mar; 185(5):1672-80. PubMed ID: 12591885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator.
    Kim SI; Jourlin-Castelli C; Wellington SR; Sonenshein AL
    J Mol Biol; 2003 Dec; 334(4):609-24. PubMed ID: 14636591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system.
    Blencke HM; Reif I; Commichau FM; Detsch C; Wacker I; Ludwig H; Stülke J
    Arch Microbiol; 2006 Mar; 185(2):136-46. PubMed ID: 16395550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and structural analysis of catabolite control protein C that responds to citrate.
    Liu W; Chen J; Jin L; Liu ZY; Lu M; Jiang G; Yang Q; Quan C; Nam KH; Xu Y
    Sci Rep; 2021 Oct; 11(1):20285. PubMed ID: 34645869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC.
    Kim HJ; Jourlin-Castelli C; Kim SI; Sonenshein AL
    Mol Microbiol; 2002 Jan; 43(2):399-410. PubMed ID: 11985717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes.
    Kim HJ; Roux A; Sonenshein AL
    Mol Microbiol; 2002 Jul; 45(1):179-90. PubMed ID: 12100558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis.
    Fouet A; Sonenshein AL
    J Bacteriol; 1990 Feb; 172(2):835-44. PubMed ID: 2105305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH.
    Cosby WM; Zuber P
    J Bacteriol; 1997 Nov; 179(21):6778-87. PubMed ID: 9352930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CcpC-dependent regulation of citrate synthase gene expression in Listeria monocytogenes.
    Mittal M; Picossi S; Sonenshein AL
    J Bacteriol; 2009 Feb; 191(3):862-72. PubMed ID: 19011028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes.
    Behari J; Youngman P
    J Bacteriol; 1998 Dec; 180(23):6316-24. PubMed ID: 9829942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic, proteomic, and genomic characterization of a putative ABC-transporter permease involved in Listeria monocytogenes biofilm formation.
    Zhu X; Liu W; Lametsch R; Aarestrup F; Shi C; She Q; Shi X; Knøchel S
    Foodborne Pathog Dis; 2011 Apr; 8(4):495-501. PubMed ID: 21204689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro binding of the response regulator CitB and of its carboxy-terminal domain to A + T-rich DNA target sequences in the control region of the divergent citC and citS operons of Klebsiella pneumoniae.
    Meyer M; Dimroth P; Bott M
    J Mol Biol; 1997 Jun; 269(5):719-31. PubMed ID: 9223636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of site-directed mutagenesis of citB on the expression and activity of Bacillus subtilis aconitase.
    Gao W; Dai S; Liu Q; Xu H; Bai Y; Qiao M
    Mikrobiologiia; 2010; 79(6):774-8. PubMed ID: 21446632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence.
    Newton SM; Klebba PE; Raynaud C; Shao Y; Jiang X; Dubail I; Archer C; Frehel C; Charbit A
    Mol Microbiol; 2005 Feb; 55(3):927-40. PubMed ID: 15661014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus.
    Hartmann T; Zhang B; Baronian G; Schulthess B; Homerova D; Grubmüller S; Kutzner E; Gaupp R; Bertram R; Powers R; Eisenreich W; Kormanec J; Herrmann M; Molle V; Somerville GA; Bischoff M
    J Biol Chem; 2013 Dec; 288(50):36116-28. PubMed ID: 24194525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elements in the LftR Repressor Operator Interface Contributing to Regulation of Aurantimycin Resistance in Listeria monocytogenes.
    Hauf S; Engelgeh T; Halbedel S
    J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis.
    Pechter KB; Meyer FM; Serio AW; Stülke J; Sonenshein AL
    J Bacteriol; 2013 Apr; 195(7):1525-37. PubMed ID: 23354745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.