These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 16352834)
1. CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes. Kim HJ; Mittal M; Sonenshein AL J Bacteriol; 2006 Jan; 188(1):179-90. PubMed ID: 16352834 [TBL] [Abstract][Full Text] [Related]
2. Dual role of CcpC protein in regulation of aconitase gene expression in Listeria monocytogenes and Bacillus subtilis. Mittal M; Pechter KB; Picossi S; Kim HJ; Kerstein KO; Sonenshein AL Microbiology (Reading); 2013 Jan; 159(Pt 1):68-76. PubMed ID: 23139400 [TBL] [Abstract][Full Text] [Related]
3. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. Jourlin-Castelli C; Mani N; Nakano MM; Sonenshein AL J Mol Biol; 2000 Jan; 295(4):865-78. PubMed ID: 10656796 [TBL] [Abstract][Full Text] [Related]
4. Complex regulation of the Bacillus subtilis aconitase gene. Kim HJ; Kim SI; Ratnayake-Lecamwasam M; Tachikawa K; Sonenshein AL; Strauch M J Bacteriol; 2003 Mar; 185(5):1672-80. PubMed ID: 12591885 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. Kim SI; Jourlin-Castelli C; Wellington SR; Sonenshein AL J Mol Biol; 2003 Dec; 334(4):609-24. PubMed ID: 14636591 [TBL] [Abstract][Full Text] [Related]
6. Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Blencke HM; Reif I; Commichau FM; Detsch C; Wacker I; Ludwig H; Stülke J Arch Microbiol; 2006 Mar; 185(2):136-46. PubMed ID: 16395550 [TBL] [Abstract][Full Text] [Related]
7. Functional and structural analysis of catabolite control protein C that responds to citrate. Liu W; Chen J; Jin L; Liu ZY; Lu M; Jiang G; Yang Q; Quan C; Nam KH; Xu Y Sci Rep; 2021 Oct; 11(1):20285. PubMed ID: 34645869 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Kim HJ; Jourlin-Castelli C; Kim SI; Sonenshein AL Mol Microbiol; 2002 Jan; 43(2):399-410. PubMed ID: 11985717 [TBL] [Abstract][Full Text] [Related]
9. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Kim HJ; Roux A; Sonenshein AL Mol Microbiol; 2002 Jul; 45(1):179-90. PubMed ID: 12100558 [TBL] [Abstract][Full Text] [Related]
10. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. Fouet A; Sonenshein AL J Bacteriol; 1990 Feb; 172(2):835-44. PubMed ID: 2105305 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. Cosby WM; Zuber P J Bacteriol; 1997 Nov; 179(21):6778-87. PubMed ID: 9352930 [TBL] [Abstract][Full Text] [Related]
12. CcpC-dependent regulation of citrate synthase gene expression in Listeria monocytogenes. Mittal M; Picossi S; Sonenshein AL J Bacteriol; 2009 Feb; 191(3):862-72. PubMed ID: 19011028 [TBL] [Abstract][Full Text] [Related]
13. A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. Behari J; Youngman P J Bacteriol; 1998 Dec; 180(23):6316-24. PubMed ID: 9829942 [TBL] [Abstract][Full Text] [Related]
14. Phenotypic, proteomic, and genomic characterization of a putative ABC-transporter permease involved in Listeria monocytogenes biofilm formation. Zhu X; Liu W; Lametsch R; Aarestrup F; Shi C; She Q; Shi X; Knøchel S Foodborne Pathog Dis; 2011 Apr; 8(4):495-501. PubMed ID: 21204689 [TBL] [Abstract][Full Text] [Related]
15. In vitro binding of the response regulator CitB and of its carboxy-terminal domain to A + T-rich DNA target sequences in the control region of the divergent citC and citS operons of Klebsiella pneumoniae. Meyer M; Dimroth P; Bott M J Mol Biol; 1997 Jun; 269(5):719-31. PubMed ID: 9223636 [TBL] [Abstract][Full Text] [Related]
16. Effect of site-directed mutagenesis of citB on the expression and activity of Bacillus subtilis aconitase. Gao W; Dai S; Liu Q; Xu H; Bai Y; Qiao M Mikrobiologiia; 2010; 79(6):774-8. PubMed ID: 21446632 [TBL] [Abstract][Full Text] [Related]
17. The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence. Newton SM; Klebba PE; Raynaud C; Shao Y; Jiang X; Dubail I; Archer C; Frehel C; Charbit A Mol Microbiol; 2005 Feb; 55(3):927-40. PubMed ID: 15661014 [TBL] [Abstract][Full Text] [Related]
18. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus. Hartmann T; Zhang B; Baronian G; Schulthess B; Homerova D; Grubmüller S; Kutzner E; Gaupp R; Bertram R; Powers R; Eisenreich W; Kormanec J; Herrmann M; Molle V; Somerville GA; Bischoff M J Biol Chem; 2013 Dec; 288(50):36116-28. PubMed ID: 24194525 [TBL] [Abstract][Full Text] [Related]
19. Elements in the LftR Repressor Operator Interface Contributing to Regulation of Aurantimycin Resistance in Listeria monocytogenes. Hauf S; Engelgeh T; Halbedel S J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649145 [TBL] [Abstract][Full Text] [Related]
20. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. Pechter KB; Meyer FM; Serio AW; Stülke J; Sonenshein AL J Bacteriol; 2013 Apr; 195(7):1525-37. PubMed ID: 23354745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]