These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16354054)

  • 1. An efficient and accurate implementation of centroid molecular dynamics using a Gaussian approximation.
    Ka BJ; Voth GA
    J Phys Chem A; 2005 Dec; 109(50):11609-17. PubMed ID: 16354054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals.
    Pérez A; Tuckerman ME; Müser MH
    J Chem Phys; 2009 May; 130(18):184105. PubMed ID: 19449906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of imaginary time path integral based methods for quantum dynamics.
    Hone TD; Rossky PJ; Voth GA
    J Chem Phys; 2006 Apr; 124(15):154103. PubMed ID: 16674214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast centroid molecular dynamics: a force-matching approach for the predetermination of the effective centroid forces.
    Hone TD; Izvekov S; Voth GA
    J Chem Phys; 2005 Feb; 122(5):54105. PubMed ID: 15740308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Gaussian molecular dynamics for quantum dynamics simulations of many-body systems: application to liquid para-hydrogen.
    Georgescu I; Deckman J; Fredrickson LJ; Mandelshtam VA
    J Chem Phys; 2011 May; 134(17):174109. PubMed ID: 21548675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path-integral centroid dynamics for general initial conditions: a nonequilibrium projection operator formulation.
    Jang S
    J Chem Phys; 2006 Feb; 124(6):64107. PubMed ID: 16483196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A centroid molecular dynamics study of liquid para-hydrogen and ortho-deuterium.
    Hone TD; Voth GA
    J Chem Phys; 2004 Oct; 121(13):6412-22. PubMed ID: 15446940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio centroid path integral molecular dynamics: application to vibrational dynamics of diatomic molecular systems.
    Ohta Y; Ohta K; Kinugawa K
    J Chem Phys; 2004 Jan; 120(1):312-20. PubMed ID: 15267291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy.
    Witt A; Ivanov SD; Shiga M; Forbert H; Marx D
    J Chem Phys; 2009 May; 130(19):194510. PubMed ID: 19466846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water.
    Ivanov SD; Witt A; Shiga M; Marx D
    J Chem Phys; 2010 Jan; 132(3):031101. PubMed ID: 20095719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion of inversion symmetry in centroid molecular dynamics: a possible avenue to recover quantum coherence.
    Huh Y; Roy PN
    J Chem Phys; 2006 Oct; 125(16):164103. PubMed ID: 17092059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the short-time limit of ring polymer molecular dynamics.
    Braams BJ; Manolopoulos DE
    J Chem Phys; 2006 Sep; 125(12):124105. PubMed ID: 17014164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centroid molecular dynamics approach to the transport properties of liquid para-hydrogen over the wide temperature range.
    Yonetani Y; Kinugawa K
    J Chem Phys; 2004 Jun; 120(22):10624-33. PubMed ID: 15268088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of approximate quantum simulation methods applied to normal liquid helium at 4 K.
    Hone TD; Poulsen JA; Rossky PJ; Manolopoulos DE
    J Phys Chem B; 2008 Jan; 112(2):294-300. PubMed ID: 18027920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum effects in light and heavy liquid water: A rigid-body centroid molecular dynamics study.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2004 Sep; 121(12):5992-6002. PubMed ID: 15367027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear quantum time correlation functions from centroid molecular dynamics and the maximum entropy method.
    Paesani F; Voth GA
    J Chem Phys; 2008 Nov; 129(19):194113. PubMed ID: 19026051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linearized semiclassical initial value time correlation functions using the thermal Gaussian approximation: applications to condensed phase systems.
    Liu J; Miller WH
    J Chem Phys; 2007 Sep; 127(11):114506. PubMed ID: 17887856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A benchmark study of different methods for calculating one- and two-dimensional optical spectra.
    McRobbie PL; Geva E
    J Phys Chem A; 2009 Oct; 113(39):10425-34. PubMed ID: 19775171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical reaction rates from ring polymer molecular dynamics.
    Craig IR; Manolopoulos DE
    J Chem Phys; 2005 Feb; 122(8):84106. PubMed ID: 15836019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New conditions for validity of the centroid molecular dynamics and ring polymer molecular dynamics.
    Yoshimori A
    J Chem Phys; 2008 Jun; 128(23):234105. PubMed ID: 18570489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.