These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16354726)

  • 1. Motor coding in floccular climbing fibers.
    Winkelman B; Frens M
    J Neurophysiol; 2006 Apr; 95(4):2342-51. PubMed ID: 16354726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferior olive and oculomotor system.
    Barmack NH
    Prog Brain Res; 2006; 151():269-91. PubMed ID: 16221592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Floccular complex spike response to transparent retinal slip.
    Frens MA; Mathoera AL; van der Steen J
    Neuron; 2001 Jun; 30(3):795-801. PubMed ID: 11430812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oculomotor anatomy and the motor-error problem: the role of the paramedian tract nuclei.
    Dean P; Porrill J
    Prog Brain Res; 2008; 171():177-86. PubMed ID: 18718298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mossy fibres sending retinal-slip, eye, and head velocity signals to the flocculus of the monkey.
    Noda H
    J Physiol; 1986 Oct; 379():39-60. PubMed ID: 3559999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nucleus prepositus hypoglossi lesions on visual climbing fiber activity in the rabbit flocculus.
    Arts MP; De Zeeuw CI; Lips J; Rosbak E; Simpson JI
    J Neurophysiol; 2000 Nov; 84(5):2552-63. PubMed ID: 11067997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased occurrence of climbing fiber inputs to the cerebellar flocculus in a mutant mouse is correlated with the timing delay of optokinetic response.
    Yoshida T; Funabiki K; Hirano T
    Eur J Neurosci; 2007 Mar; 25(5):1467-74. PubMed ID: 17425572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis.
    Thier P; Möck M
    Prog Brain Res; 2006; 151():293-320. PubMed ID: 16221593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oculomotor cerebellum.
    Voogd J; Barmack NH
    Prog Brain Res; 2006; 151():231-68. PubMed ID: 16221591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of eye movements in the retinal code for a size discrimination task.
    Segev R; Schneidman E; Goodhouse J; Berry MJ
    J Neurophysiol; 2007 Sep; 98(3):1380-91. PubMed ID: 17625063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collateralized projection of visual climbing fibers to the flocculus and nodulus of the rabbit.
    Takeda T; Maekawa K
    Neurosci Res; 1984 Dec; 2(1-2):125-32. PubMed ID: 6536906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation.
    Shutoh F; Ohki M; Kitazawa H; Itohara S; Nagao S
    Neuroscience; 2006 May; 139(2):767-77. PubMed ID: 16458438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control.
    Hoebeek FE; Stahl JS; van Alphen AM; Schonewille M; Luo C; Rutteman M; van den Maagdenberg AM; Molenaar PC; Goossens HH; Frens MA; De Zeeuw CI
    Neuron; 2005 Mar; 45(6):953-65. PubMed ID: 15797555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity.
    Yamamoto K; Kobayashi Y; Takemura A; Kawano K; Kawato M
    J Neurophysiol; 2002 Mar; 87(3):1554-71. PubMed ID: 11877526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of the dependence of compensatory eye movements during translation on target distance and eccentricity.
    Meng H; Angelaki DE
    J Neurophysiol; 2006 Apr; 95(4):2530-40. PubMed ID: 16407428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual awareness and the cerebellum: possible role of decorrelation control.
    Dean P; Porrill J; Stone JV
    Prog Brain Res; 2004; 144():61-75. PubMed ID: 14650840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum.
    Ruigrok TJ
    J Comp Neurol; 2003 Nov; 466(2):278-98. PubMed ID: 14528453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement-related gating of climbing fibre input to cerebellar cortical zones.
    Apps R
    Prog Neurobiol; 1999 Apr; 57(5):537-62. PubMed ID: 10215101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference of climbing fiber input sources between the primate oculomotor-related cerebellar vermis and hemisphere revealed by a retrograde tracing study.
    Kitazawa H; Xiong G; Hiramatsu T; Ohki M; Nagao S
    Neurosci Lett; 2009 Oct; 462(1):10-3. PubMed ID: 19559754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MST neurons code for visual motion in space independent of pursuit eye movements.
    Inaba N; Shinomoto S; Yamane S; Takemura A; Kawano K
    J Neurophysiol; 2007 May; 97(5):3473-83. PubMed ID: 17329625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.