BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1635482)

  • 1. [The nature of stability of yeast cells to drying].
    Volkov VIu; Sakharov BV; Shchepkin VD; Fediukina GN; Kashuba AA
    Mikrobiologiia; 1992; 61(2):214-22. PubMed ID: 1635482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Correlation between the cellular content of mobile water and the viability of lyophilized yeast cells].
    Shkidchenko AN; Nikitin VA
    Mikrobiologiia; 2004; 73(4):511-5. PubMed ID: 15521178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual role for intracellular trehalose in the resistance of yeast cells to water stress.
    Sano F; Asakawa N; Inoue Y; Sakurai M
    Cryobiology; 1999 Aug; 39(1):80-7. PubMed ID: 10458903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [NMR spin-echo study of the lyophilized biomass of Candida utilis yeasts at different growth stages].
    Aksenov SI; Nikitin VA; Shkidchenko AN; Kudriavtsev AA
    Mikrobiologiia; 1975; 44(3):546-51. PubMed ID: 1172177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation mechanisms of trehalose in food and biosystems.
    Patist A; Zoerb H
    Colloids Surf B Biointerfaces; 2005 Feb; 40(2):107-13. PubMed ID: 15642461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae.
    Iwahashi H; Obuchi K; Fujii S; Komatsu Y
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):763-9. PubMed ID: 8535169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational and bioactivity analysis of insulin: freeze-drying TBA/water co-solvent system in the presence of surfactant and sugar.
    Zhang Y; Deng Y; Wang X; Xu J; Li Z
    Int J Pharm; 2009 Apr; 371(1-2):71-81. PubMed ID: 19136051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose and hyaluronic acid coordinately stabilized freeze-dried pancreatic kininogenase.
    Zhang Y; Ji B; Ling P; Zhang T
    Eur J Pharm Biopharm; 2007 Jan; 65(1):18-25. PubMed ID: 16950608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.
    Venturi L; Rocculi P; Cavani C; Placucci G; Dalla Rosa M; Cremonini MA
    J Agric Food Chem; 2007 Dec; 55(26):10572-8. PubMed ID: 18047277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trehalose-protein interaction in aqueous solution.
    Lins RD; Pereira CS; Hünenberger PH
    Proteins; 2004 Apr; 55(1):177-86. PubMed ID: 14997551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices.
    Cerrutti P; Segovia de Huergo M; Galvagno M; Schebor C; del Pilar Buera M
    Appl Microbiol Biotechnol; 2000 Oct; 54(4):575-80. PubMed ID: 11092635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glass-forming biopreservatives on head group rotational dynamics in freeze-dried phospholipid bilayers: a 31P NMR study.
    Jain P; Sen S; Risbud SH
    J Chem Phys; 2009 Jul; 131(2):025102. PubMed ID: 19604010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization and mobility of water in amorphous and crystalline trehalose.
    Kilburn D; Townrow S; Meunier V; Richardson R; Alam A; Ubbink J
    Nat Mater; 2006 Aug; 5(8):632-5. PubMed ID: 16845422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured water in partially dehydrated yeast cells and at partially hydrophobized fumed silica surface.
    Turov VV; Gun'ko VM; Bogatyrev VM; Zarko VI; Gorbik SP; Pakhlov EM; Leboda R; Shulga OV; Chuiko AA
    J Colloid Interface Sci; 2005 Mar; 283(2):329-43. PubMed ID: 15721902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells.
    Ma X; Jamil K; Macrae TH; Clegg JS; Russell JM; Villeneuve TS; Euloth M; Sun Y; Crowe JH; Tablin F; Oliver AE
    Cryobiology; 2005 Aug; 51(1):15-28. PubMed ID: 15963489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Distribution of trehalose between the cells and the rehydration medium in dehydrated Saccharomyces cerevisiae].
    Zikmanis PB; Kruche RV; Auzinia LP; Margevicha MV; Beker ME
    Mikrobiologiia; 1988; 57(3):491-3. PubMed ID: 3054438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filter-exchange PGSE NMR determination of cell membrane permeability.
    Aslund I; Nowacka A; Nilsson M; Topgaard D
    J Magn Reson; 2009 Oct; 200(2):291-5. PubMed ID: 19647458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of moisture content on the invertase activity of freeze-dried S. cerevisiae.
    Pitombo RN; Spring C; Passos RF; Tonato M; Vitolo M
    Cryobiology; 1994 Aug; 31(4):383-92. PubMed ID: 7924395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of Mammalian cells.
    Chen B; Fowler A; Bhowmick S
    J Biomech Eng; 2006 Jun; 128(3):335-46. PubMed ID: 16706583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.