BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 16356061)

  • 1. New isoreticular metal-organic framework materials for high hydrogen storage capacity.
    Sagara T; Ortony J; Ganz E
    J Chem Phys; 2005 Dec; 123(21):214707. PubMed ID: 16356061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding energies of hydrogen molecules to isoreticular metal-organic framework materials.
    Sagara T; Klassen J; Ortony J; Ganz E
    J Chem Phys; 2005 Jul; 123(1):014701. PubMed ID: 16035857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover.
    Suri M; Dornfeld M; Ganz E
    J Chem Phys; 2009 Nov; 131(17):174703. PubMed ID: 19895031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage in microporous metal-organic frameworks.
    Rosi NL; Eckert J; Eddaoudi M; Vodak DT; Kim J; O'Keeffe M; Yaghi OM
    Science; 2003 May; 300(5622):1127-9. PubMed ID: 12750515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jun; 128(25):8136-7. PubMed ID: 16787068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
    Luo J; Xu H; Liu Y; Zhao Y; Daemen LL; Brown C; Timofeeva TV; Ma S; Zhou HC
    J Am Chem Soc; 2008 Jul; 130(30):9626-7. PubMed ID: 18611006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exceptional H2 saturation uptake in microporous metal-organic frameworks.
    Wong-Foy AG; Matzger AJ; Yaghi OM
    J Am Chem Soc; 2006 Mar; 128(11):3494-5. PubMed ID: 16536503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover.
    Li Y; Yang RT
    J Am Chem Soc; 2006 Jan; 128(3):726-7. PubMed ID: 16417355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen storage in metal-organic frameworks.
    Murray LJ; Dincă M; Long JR
    Chem Soc Rev; 2009 May; 38(5):1294-314. PubMed ID: 19384439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.
    Millward AR; Yaghi OM
    J Am Chem Soc; 2005 Dec; 127(51):17998-9. PubMed ID: 16366539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.
    Eddaoudi M; Kim J; Rosi N; Vodak D; Wachter J; O'Keeffe M; Yaghi OM
    Science; 2002 Jan; 295(5554):469-72. PubMed ID: 11799235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks.
    Liu Y; Kabbour H; Brown CM; Neumann DA; Ahn CC
    Langmuir; 2008 May; 24(9):4772-7. PubMed ID: 18366228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.
    Tanabe KK; Wang Z; Cohen SM
    J Am Chem Soc; 2008 Jul; 130(26):8508-17. PubMed ID: 18540671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate.
    Dailly A; Vajo JJ; Ahn CC
    J Phys Chem B; 2006 Jan; 110(3):1099-101. PubMed ID: 16471648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks.
    Frost H; Düren T; Snurr RQ
    J Phys Chem B; 2006 May; 110(19):9565-70. PubMed ID: 16686503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage.
    Yao X; Wu C; Du A; Lu GQ; Cheng H; Smith SC; Zou J; He Y
    J Phys Chem B; 2006 Jun; 110(24):11697-703. PubMed ID: 16800465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study.
    Mavrandonakis A; Klontzas E; Tylianakis E; Froudakis GE
    J Am Chem Soc; 2009 Sep; 131(37):13410-4. PubMed ID: 19754188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.