These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 16356071)
1. Calculation of the entropy of random coil polymers with the hypothetical scanning Monte Carlo method. White RP; Meirovitch H J Chem Phys; 2005 Dec; 123(21):214908. PubMed ID: 16356071 [TBL] [Abstract][Full Text] [Related]
2. Calculation of the Entropy of Lattice Polymer Models from Monte Carlo Trajectories. White RP; Funt J; Meirovitch H Chem Phys Lett; 2005 Jul; 410(4-6):430-435. PubMed ID: 16912812 [TBL] [Abstract][Full Text] [Related]
3. Calculation of the entropy and free energy of peptides by molecular dynamics simulations using the hypothetical scanning molecular dynamics method. Cheluvaraja S; Meirovitch H J Chem Phys; 2006 Jul; 125(2):24905. PubMed ID: 16848609 [TBL] [Abstract][Full Text] [Related]
4. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics. Meirovitch H J Mol Recognit; 2010; 23(2):153-72. PubMed ID: 19650071 [TBL] [Abstract][Full Text] [Related]
5. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides. Cheluvaraja S; Meirovitch H J Chem Phys; 2005 Feb; 122(5):54903. PubMed ID: 15740349 [TBL] [Abstract][Full Text] [Related]
6. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: application to liquid argon and water. White RP; Meirovitch H J Chem Phys; 2004 Dec; 121(22):10889-904. PubMed ID: 15634040 [TBL] [Abstract][Full Text] [Related]
7. Free volume hypothetical scanning molecular dynamics method for the absolute free energy of liquids. White RP; Meirovitch H J Chem Phys; 2006 May; 124(20):204108. PubMed ID: 16774320 [TBL] [Abstract][Full Text] [Related]
8. Calculation of the entropy and free energy from monte carlo simulations of a peptide stretched by an external force. Cheluvaraja S; Meirovitch H J Phys Chem B; 2005 Nov; 109(46):21963-70. PubMed ID: 16853854 [TBL] [Abstract][Full Text] [Related]
9. A simulation method for calculating the absolute entropy and free energy of fluids: application to liquid argon and water. White RP; Meirovitch H Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9235-40. PubMed ID: 15197270 [TBL] [Abstract][Full Text] [Related]
10. Simulation method for calculating the entropy and free energy of peptides and proteins. Cheluvaraja S; Meirovitch H Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9241-6. PubMed ID: 15197271 [TBL] [Abstract][Full Text] [Related]
11. Stability of the Free and Bound Microstates of a Mobile Loop of α-Amylase Obtained from the Absolute Entropy and Free Energy. Cheluvaraja S; Meirovitch H J Chem Theory Comput; 2008 Jan; 4(1):192-208. PubMed ID: 26619992 [TBL] [Abstract][Full Text] [Related]
12. Entropy and free energy of a mobile protein loop in explicit water. Cheluvaraja S; Mihailescu M; Meirovitch H J Phys Chem B; 2008 Aug; 112(31):9512-22. PubMed ID: 18613721 [TBL] [Abstract][Full Text] [Related]
13. Confinement causes opposite effects on the folding transition of a single polymer chain depending on its stiffness. Higuchi Y; Yoshikawa K; Iwaki T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021924. PubMed ID: 21929035 [TBL] [Abstract][Full Text] [Related]
14. Coil-globule transition for regular, random, and specially designed copolymers: Monte Carlo simulation and self-consistent field theory. Oever JM; Leermakers FA; Fleer GJ; Ivanov VA; Shusharina NP; Khokhlov AR; Khalatur PG Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041708. PubMed ID: 12005847 [TBL] [Abstract][Full Text] [Related]
15. Stretching semiflexible polymer chains: evidence for the importance of excluded volume effects from Monte Carlo simulation. Hsu HP; Binder K J Chem Phys; 2012 Jan; 136(2):024901. PubMed ID: 22260610 [TBL] [Abstract][Full Text] [Related]
16. Coil-bridge transition in a single polymer chain as an unconventional phase transition: theory and simulation. Klushin LI; Skvortsov AM; Polotsky AA; Hsu HP; Binder K J Chem Phys; 2014 May; 140(20):204908. PubMed ID: 24880326 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo algorithm for free energy calculation. Bi S; Tong NH Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013310. PubMed ID: 26274310 [TBL] [Abstract][Full Text] [Related]
18. Network rigidity at finite temperature: relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems. Jacobs DJ; Dallakyan S; Wood GG; Heckathorne A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061109. PubMed ID: 14754182 [TBL] [Abstract][Full Text] [Related]
19. Conformational entropy of a pseudoknot polymer. Sheng YJ; Mou YC; Tsao HK J Chem Phys; 2006 Mar; 124(12):124904. PubMed ID: 16599722 [TBL] [Abstract][Full Text] [Related]
20. Importance of chirality and reduced flexibility of protein side chains: a study with square and tetrahedral lattice models. Zhang J; Chen Y; Chen R; Liang J J Chem Phys; 2004 Jul; 121(1):592-603. PubMed ID: 15260581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]