These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16356106)

  • 1. Role of Rac-GTPase and reactive oxygen species in cardiac differentiation of stem cells.
    Puceat M
    Antioxid Redox Signal; 2005; 7(11-12):1435-9. PubMed ID: 16356106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis.
    Sauer H; Wartenberg M
    Antioxid Redox Signal; 2005; 7(11-12):1423-34. PubMed ID: 16356105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS).
    Ferraro D; Corso S; Fasano E; Panieri E; Santangelo R; Borrello S; Giordano S; Pani G; Galeotti T
    Oncogene; 2006 Jun; 25(26):3689-98. PubMed ID: 16462764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells.
    Chen KC; Zhou Y; Zhang W; Lou MF
    Mol Vis; 2007 Mar; 13():374-87. PubMed ID: 17392688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation.
    Kim JH; Kim SH; Song SY; Kim WS; Song SU; Yi T; Jeon MS; Chung HM; Xia Y; Sung JH
    Cell Biol Int; 2014 Jan; 38(1):32-40. PubMed ID: 23956071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual role of the GTPase Rac in cardiac differentiation of stem cells.
    Pucéat M; Travo P; Quinn MT; Fort P
    Mol Biol Cell; 2003 Jul; 14(7):2781-92. PubMed ID: 12857864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways.
    Ma J; Wang Y; Zheng D; Wei M; Xu H; Peng T
    Cardiovasc Res; 2013 Jan; 97(1):77-87. PubMed ID: 23027656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linking of MHC class II molecules interferes with phorbol 12,13-dibutyrate-induced differentiation of resting B cells by inhibiting Rac-associated ROS-dependent ERK/p38 MAP kinase pathways leading to NF-kappaB activation.
    Yang HY; Kim J; Chung GH; Lee JC; Jang YS
    Mol Immunol; 2007 Mar; 44(7):1577-86. PubMed ID: 17011624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of reactive oxygen species in stem cells and cancer stem cells.
    Kobayashi CI; Suda T
    J Cell Physiol; 2012 Feb; 227(2):421-30. PubMed ID: 21448925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species as mediators of cell adhesion.
    Chiarugi P
    Ital J Biochem; 2003 Mar; 52(1):28-32. PubMed ID: 12833635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GTPases and reactive oxygen species: switches for killing and signaling.
    Werner E
    J Cell Sci; 2004 Jan; 117(Pt 2):143-53. PubMed ID: 14676270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newborn neurons acquire high levels of reactive oxygen species and increased mitochondrial proteins upon differentiation from progenitors.
    Tsatmali M; Walcott EC; Crossin KL
    Brain Res; 2005 Apr; 1040(1-2):137-50. PubMed ID: 15804435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells.
    Wei H; Cong X
    Free Radic Res; 2018 Feb; 52(2):150-158. PubMed ID: 29258365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticonvulsant valproic acid inhibits cardiomyocyte differentiation of embryonic stem cells by increasing intracellular levels of reactive oxygen species.
    Na L; Wartenberg M; Nau H; Hescheler J; Sauer H
    Birth Defects Res A Clin Mol Teratol; 2003 Mar; 67(3):174-80. PubMed ID: 12797459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation.
    Schmelter M; Ateghang B; Helmig S; Wartenberg M; Sauer H
    FASEB J; 2006 Jun; 20(8):1182-4. PubMed ID: 16636108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ras and Rac as activators of reactive oxygen species (ROS).
    Archer H; Bar-Sagi D
    Methods Mol Biol; 2002; 189():67-73. PubMed ID: 12094595
    [No Abstract]   [Full Text] [Related]  

  • 17. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases.
    Martyn KD; Frederick LM; von Loehneysen K; Dinauer MC; Knaus UG
    Cell Signal; 2006 Jan; 18(1):69-82. PubMed ID: 15927447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into redox regulation of stem cell self-renewal and differentiation.
    Ren F; Wang K; Zhang T; Jiang J; Nice EC; Huang C
    Biochim Biophys Acta; 2015 Aug; 1850(8):1518-26. PubMed ID: 25766871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of multiple transcription factors by reactive oxygen species and effects of pro-inflammatory cytokines released during myocardial infarction on cardiac differentiation of embryonic stem cells.
    Law SK; Leung CS; Yau KL; Tse CL; Wong CK; Leung FP; Mascheck L; Huang Y; Sauer H; Tsang SY
    Int J Cardiol; 2013 Oct; 168(4):3458-72. PubMed ID: 23706318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species in cardiac signalling: from mitochondria to plasma membrane ion channels.
    Hool LC
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):146-51. PubMed ID: 16445714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.