BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16356169)

  • 1. Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells.
    Prinetti A; Millimaggi D; D'Ascenzo S; Clarkson M; Bettiga A; Chigorno V; Sonnino S; Pavan A; Dolo V
    Biochem J; 2006 Apr; 395(2):311-8. PubMed ID: 16356169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of a multifactorial resistance phenotype by high paclitaxel selective pressure in a human ovarian carcinoma cell line.
    Violini S; D'Ascenzo S; Bagnoli M ; Millimaggi D; Miotti S; Canevari S; Pavan A; Dolo V
    J Exp Clin Cancer Res; 2004 Mar; 23(1):83-91. PubMed ID: 15149155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the sphingolipid rheostat is involved in paclitaxel resistance of the human prostate cancer cell line PC3-PR.
    Aoyama Y; Sobue S; Mizutani N; Inoue C; Kawamoto Y; Nishizawa Y; Ichihara M; Kyogashima M; Suzuki M; Nozawa Y; Murate T
    Biochem Biophys Res Commun; 2017 Apr; 486(2):551-557. PubMed ID: 28322796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of paclitaxel-induced apoptosis in an ovarian cancer cell line and its paclitaxel-resistant clone.
    Sugimura M; Sagae S; Ishioka S; Nishioka Y; Tsukada K; Kudo R
    Oncology; 2004; 66(1):53-61. PubMed ID: 15031599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubulin from paclitaxel-resistant cells as a probe for novel antimicrotubule agents.
    Sackett DL; Giannakakou P; Poruchynsky M; Fojo A
    Cancer Chemother Pharmacol; 1997; 40(3):228-32. PubMed ID: 9219506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible involvement of glycolipids in anticancer drug resistance of human ovarian serous carcinoma-derived cells.
    Tanaka K; Takada H; Isonishi S; Aoki D; Mikami M; Kiguchi K; Iwamori M
    J Biochem; 2012 Dec; 152(6):587-94. PubMed ID: 23038675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells.
    Balachandran R; Welsh MJ; Day BW
    Oncogene; 2003 Dec; 22(55):8924-30. PubMed ID: 14654788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suberoylanilide hydroxamic acid partly reverses resistance to paclitaxel in human ovarian cancer cell lines.
    Angelucci A; Mari M; Millimaggi D; Giusti I; Carta G; Bologna M; Dolo V
    Gynecol Oncol; 2010 Dec; 119(3):557-63. PubMed ID: 20825984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dexamethasone inhibits the effect of paclitaxel on human ovarian carcinoma xenografts in nude mice.
    Hou WJ; Guan JH; Dong Q; Han YH; Zhang R
    Eur Rev Med Pharmacol Sci; 2013 Nov; 17(21):2902-8. PubMed ID: 24254559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ganglioside shedding and changes in ceramide biosynthesis in human ovarian tumors.
    Dyatlovitskaya EV; Andreasyan GO; Malykh YaN ; Rylova SN; Somova OG
    Biochemistry (Mosc); 1997 May; 62(5):557-61. PubMed ID: 9275295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of docetaxel in paclitaxel-resistant ovarian cancer cells.
    Sato S; Kigawa J; Kanamori Y; Itamochi H; Oishi T; Shimada M; Iba T; Naniwa J; Uegaki K; Terakawa N
    Cancer Chemother Pharmacol; 2004 Mar; 53(3):247-52. PubMed ID: 14610615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer.
    Devalapally H; Duan Z; Seiden MV; Amiji MM
    Int J Cancer; 2007 Oct; 121(8):1830-8. PubMed ID: 17557285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells.
    George JA; Chen T; Taylor CC
    Cancer Res; 2005 Nov; 65(22):10381-8. PubMed ID: 16288028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia decreased chemosensitivity of breast cancer cell line MCF-7 to paclitaxel through cyclin B1.
    Dong XL; Xu PF; Miao C; Fu ZY; Li QP; Tang PY; Wang T
    Biomed Pharmacother; 2012 Feb; 66(1):70-5. PubMed ID: 22264882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential sensitivity to paclitaxel-induced apoptosis and growth suppression in paclitaxel-resistant cell lines established from HEC-1 human endometrial adenocarcinoma cells.
    Tanaka T; Toujima S; Tanaka J
    Int J Oncol; 2012 Nov; 41(5):1837-44. PubMed ID: 22923148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Akt involvement in paclitaxel chemoresistance of human ovarian cancer cells.
    Kim SH; Juhnn YS; Song YS
    Ann N Y Acad Sci; 2007 Jan; 1095():82-9. PubMed ID: 17404021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations.
    Desai A; Vyas T; Amiji M
    J Pharm Sci; 2008 Jul; 97(7):2745-56. PubMed ID: 17854074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medical therapy of advanced malignant epithelial tumours of the ovary.
    Colombo N; Parma G; Bocciolone L; Franchi D; Sideri M; Maggioni A
    Forum (Genova); 2000; 10(4):323-32. PubMed ID: 11535983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-resistance to the synthetic retinoid CD437 in a paclitaxel-resistant human ovarian carcinoma cell line is independent of the overexpression of retinoic acid receptor-gamma.
    Kumar A; Soprano DR; Parekh HK
    Cancer Res; 2001 Oct; 61(20):7552-5. PubMed ID: 11606393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors.
    Ho EA; Soo PL; Allen C; Piquette-Miller M
    J Control Release; 2007 Jan; 117(1):20-7. PubMed ID: 17113177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.