BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16357364)

  • 1. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction.
    Weissmann N; Zeller S; Schäfer RU; Turowski C; Ay M; Quanz K; Ghofrani HA; Schermuly RT; Fink L; Seeger W; Grimminger F
    Am J Respir Cell Mol Biol; 2006 Apr; 34(4):505-13. PubMed ID: 16357364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness.
    Durham AL; Speer MY; Scatena M; Giachelli CM; Shanahan CM
    Cardiovasc Res; 2018 Mar; 114(4):590-600. PubMed ID: 29514202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic pulmonary vasoconstriction.
    Sylvester JT; Shimoda LA; Aaronson PI; Ward JP
    Physiol Rev; 2012 Jan; 92(1):367-520. PubMed ID: 22298659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EDHF: spreading the influence of the endothelium.
    Garland CJ; Hiley CR; Dora KA
    Br J Pharmacol; 2011 Oct; 164(3):839-52. PubMed ID: 21133895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice.
    Sun L; Ishida T; Yasuda T; Kojima Y; Honjo T; Yamamoto Y; Yamamoto H; Ishibashi S; Hirata K; Hayashi Y
    Cardiovasc Res; 2009 May; 82(2):371-81. PubMed ID: 19176597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension.
    Wang YX; Reyes-García J; Di Mise A; Zheng YM
    J Gen Physiol; 2023 Mar; 155(3):. PubMed ID: 36625865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NFAT5/TonEBP Limits Pulmonary Vascular Resistance in the Hypoxic Lung by Controlling Mitochondrial Reactive Oxygen Species Generation in Arterial Smooth Muscle Cells.
    Laban H; Siegmund S; Zappe M; Trogisch FA; Heineke J; Torre C; Fisslthaler B; Arnold C; Lauryn J; Büttner M; Mogler C; Kato K; Adams RH; Kuk H; Fischer A; Hecker M; Kuebler WM; Korff T
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target.
    Karnati S; Seimetz M; Kleefeldt F; Sonawane A; Madhusudhan T; Bachhuka A; Kosanovic D; Weissmann N; Krüger K; Ergün S
    Front Cardiovasc Med; 2021; 8():649512. PubMed ID: 33912600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction.
    Smith KA; Schumacker PT
    J Physiol; 2019 Feb; 597(4):1033-1043. PubMed ID: 30091476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species and Pulmonary Vasculature During Hypobaric Hypoxia.
    Siques P; Brito J; Pena E
    Front Physiol; 2018; 9():865. PubMed ID: 30050455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD.
    Guo X; Fan Y; Cui J; Hao B; Zhu L; Sun X; He J; Yang J; Dong J; Wang Y; Liu X; Chen J
    BMC Pulm Med; 2018 Jul; 18(1):111. PubMed ID: 29986678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox signaling during hypoxia in mammalian cells.
    Smith KA; Waypa GB; Schumacker PT
    Redox Biol; 2017 Oct; 13():228-234. PubMed ID: 28595160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH oxidase 4 is not involved in hypoxia-induced pulmonary hypertension.
    Veith C; Kraut S; Wilhelm J; Sommer N; Quanz K; Seeger W; Brandes RP; Weissmann N; Schröder K
    Pulm Circ; 2016 Sep; 6(3):397-400. PubMed ID: 27683617
    [No Abstract]   [Full Text] [Related]  

  • 14. NADPH oxidases-do they play a role in TRPC regulation under hypoxia?
    Malczyk M; Veith C; Schermuly RT; Gudermann T; Dietrich A; Sommer N; Weissmann N; Pak O
    Pflugers Arch; 2016 Jan; 468(1):23-41. PubMed ID: 26424109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.
    Adesina SE; Kang BY; Bijli KM; Ma J; Cheng J; Murphy TC; Michael Hart C; Sutliff RL
    Free Radic Biol Med; 2015 Oct; 87():36-47. PubMed ID: 26073127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels.
    Veit F; Pak O; Brandes RP; Weissmann N
    Antioxid Redox Signal; 2015 Feb; 22(6):537-52. PubMed ID: 25545236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes.
    Pugliese SC; Poth JM; Fini MA; Olschewski A; El Kasmi KC; Stenmark KR
    Am J Physiol Lung Cell Mol Physiol; 2015 Feb; 308(3):L229-52. PubMed ID: 25416383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide and superoxide anion balance in rats exposed to chronic and long term intermittent hypoxia.
    Siques P; López de Pablo AL; Brito J; Arribas SM; Flores K; Arriaza K; Naveas N; González MC; Hoorntje A; León-Velarde F; López MR
    Biomed Res Int; 2014; 2014():610474. PubMed ID: 24719876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release.
    Connolly MJ; Prieto-Lloret J; Becker S; Ward JP; Aaronson PI
    J Physiol; 2013 Sep; 591(18):4473-98. PubMed ID: 23774281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation.
    Waypa GB; Marks JD; Guzy RD; Mungai PT; Schriewer JM; Dokic D; Ball MK; Schumacker PT
    Am J Respir Crit Care Med; 2013 Feb; 187(4):424-32. PubMed ID: 23328522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.