These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16358055)

  • 1. On the influence of porphyrin pi-pi stacking on supramolecular chirality created in the porphyrin-based twisted tape structure.
    Takeuchi M; Tanaka S; Shinkai S
    Chem Commun (Camb); 2005 Nov; (44):5539-41. PubMed ID: 16358055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality amplification of porphyrin assemblies exclusively constructed from achiral porphyrin derivatives.
    Chen P; Ma X; Duan P; Liu M
    Chemphyschem; 2006 Nov; 7(11):2419-23. PubMed ID: 17022096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins.
    Zhang Y; Chen P; Liu M
    Chemistry; 2008; 14(6):1793-803. PubMed ID: 18064623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of organic nanoscrews from simple porphyrin derivatives.
    Ozawa H; Tanaka H; Kawao M; Uno S; Nakazato K
    Chem Commun (Camb); 2009 Dec; (47):7411-3. PubMed ID: 20024245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Supramolecular Chiral Twisted Nanoribbons from Achiral Conjugated Oligoaniline Derivatives.
    Zhou C; Ren Y; Han J; Gong X; Wei Z; Xie J; Guo R
    J Am Chem Soc; 2018 Aug; 140(30):9417-9425. PubMed ID: 29923713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of supramolecular organization on energy transfer properties in chiral oligo(p-phenylene vinylene) porphyrin assemblies.
    Hoeben FJ; Wolffs M; Zhang J; Feyter SD; Leclère P; Schenning AP; Meijer EW
    J Am Chem Soc; 2007 Aug; 129(31):9819-28. PubMed ID: 17629275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porphyrin assemblies through the air/water interface: effect of hydrogen bond, thermal annealing, and amplification of supramolecular chirality.
    Rong Y; Chen P; Wang D; Liu M
    Langmuir; 2012 Apr; 28(15):6356-63. PubMed ID: 22444117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin-naphthodiimide interactions as a structural motif in foldamers and supramolecular assemblies.
    Merican Z; Johnstone KD; Gunter MJ
    Org Biomol Chem; 2008 Jul; 6(14):2534-43. PubMed ID: 18600275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of supramolecular chirality and morphology of the LB film of achiral barbituric acid by amphiphilic matrix molecules.
    Huang X; Liu M
    Langmuir; 2006 Apr; 22(9):4110-5. PubMed ID: 16618152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triply fused Zn(II)-porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (SWNTs).
    Cheng F; Zhang S; Adronov A; Echegoyen L; Diederich F
    Chemistry; 2006 Aug; 12(23):6062-70. PubMed ID: 16710865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guest binding and new self-assembly of bisporphyrins.
    Haino T; Fujii T; Fukazawa Y
    J Org Chem; 2006 Mar; 71(7):2572-80. PubMed ID: 16555807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral induction, memory, and amplification in porphyrin homoaggregates based on electrostatic interactions.
    Zeng L; He Y; Dai Z; Wang J; Cao Q; Zhang Y
    Chemphyschem; 2009 Apr; 10(6):954-62. PubMed ID: 19263451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular tilt chirality derived from symmetrical benzene molecules: handedness of the 2(1) helical assembly.
    Tanaka A; Hisaki I; Tohnai N; Miyata M
    Chem Asian J; 2007 Feb; 2(2):230-8. PubMed ID: 17441157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pillars, layers, pores and networks from nickeltripyrrins: a porphyrin fragment as a versatile building block for the construction of supramolecular assemblies.
    Bröring M; Prikhodovski S; Brandt CD; Cónsul Tejero E
    Chemistry; 2007; 13(2):396-406. PubMed ID: 17136784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral assembly from achiral rod-coil molecules triggered by compression at the air-water interface.
    Liu L; Hong DJ; Lee M
    Langmuir; 2009 May; 25(9):5061-7. PubMed ID: 19301880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Left or right? The direction of compression-generated vortex-like flow selects the macroscopic chirality of interfacial molecular assemblies.
    Chen P; Ma X; Hu K; Rong Y; Liu M
    Chemistry; 2011 Oct; 17(43):12108-14. PubMed ID: 21905133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular interaction patterns in the zinc(II) dichloride and tin(IV) tetrachloride complexes with dipyrido[f,h]quinoxaline-6,7-dicarbonitrile.
    Kozlov L; Goldberg I
    Acta Crystallogr C; 2008 Mar; 64(Pt 3):m123-6. PubMed ID: 18322323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular chirality control by solvent changes. Solvodichroic effect on chiral porphyrin aggregation.
    Monti D; Venanzi M; Mancini G; Natale CD; Paolesse R
    Chem Commun (Camb); 2005 May; (19):2471-3. PubMed ID: 15886774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral memory: induction, amplification, and switching in porphyrin assemblies.
    Rosaria L; D'urso A; Mammana A; Purrello R
    Chirality; 2008 Mar; 20(3-4):411-9. PubMed ID: 17806090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.