These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 16358347)

  • 1. Facile "green" synthesis, characterization, and catalytic function of beta-D-glucose-stabilized Au nanocrystals.
    Liu J; Qin G; Raveendran P; Ikushima Y
    Chemistry; 2006 Mar; 12(8):2131-8. PubMed ID: 16358347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au nanoparticles and polyaniline coated resin beads for simultaneous catalytic oxidation of glucose and colorimetric detection of the product.
    Majumdar G; Goswami M; Sarma TK; Paul A; Chattopadhyay A
    Langmuir; 2005 Mar; 21(5):1663-7. PubMed ID: 15723451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles.
    Aryal S; B K C R; Dharmaraj N; Bhattarai N; Kim CH; Kim HY
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jan; 63(1):160-3. PubMed ID: 15955726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.
    Kasthuri J; Veerapandian S; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):55-60. PubMed ID: 18977643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of gold nanochains via photoactivation technique and their catalytic applications.
    Sinha AK; Basu M; Sarkar S; Pradhan M; Pal T
    J Colloid Interface Sci; 2013 May; 398():13-21. PubMed ID: 23473571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.
    Sen IK; Maity K; Islam SS
    Carbohydr Polym; 2013 Jan; 91(2):518-28. PubMed ID: 23121940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.
    Aswathy Aromal S; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1-5. PubMed ID: 22743607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation behavior of chitosan chains in the 'green' synthesis of gold nanoparticles.
    Sun C; Qu R; Chen H; Ji C; Wang C; Sun Y; Wang B
    Carbohydr Res; 2008 Oct; 343(15):2595-9. PubMed ID: 18619580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams.
    Aromal SA; Babu KV; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():1025-30. PubMed ID: 22954810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method.
    Shen Q; Min Q; Shi J; Jiang L; Hou W; Zhu JJ
    Ultrason Sonochem; 2011 Jan; 18(1):231-7. PubMed ID: 20579926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake.
    Li G; Li D; Zhang L; Zhai J; Wang E
    Chemistry; 2009 Sep; 15(38):9868-73. PubMed ID: 19697373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles.
    Rangnekar A; Sarma TK; Singh AK; Deka J; Ramesh A; Chattopadhyay A
    Langmuir; 2007 May; 23(10):5700-6. PubMed ID: 17425338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of branched gold nanocrystals by a seeding growth approach.
    Kuo CH; Huang MH
    Langmuir; 2005 Mar; 21(5):2012-6. PubMed ID: 15723503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature strategy for networked nonspherical gold nanostructures from Au(III)[G-2]CO2H dendrimer complex.
    Gao S; Zhang H; Liu X; Wang X; Ge L
    J Colloid Interface Sci; 2006 Jan; 293(2):409-13. PubMed ID: 16055138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application.
    Xia B; He F; Li L
    Langmuir; 2013 Apr; 29(15):4901-7. PubMed ID: 23517530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum-catalyzed synthesis of water-soluble gold-platinum nanoparticles.
    Njoki PN; Luo J; Wang L; Maye MM; Quaizar H; Zhong CJ
    Langmuir; 2005 Feb; 21(4):1623-8. PubMed ID: 15697317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic strategy for efficient degradation of nitroaromatic pesticides by using gold nanoflower.
    Mao K; Chen Y; Wu Z; Zhou X; Shen A; Hu J
    J Agric Food Chem; 2014 Nov; 62(44):10638-45. PubMed ID: 25329810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template.
    Liu W; Repo E; Heikkilä M; Leskelä M; Sillanpää M
    Nanotechnology; 2010 Oct; 21(39):395604. PubMed ID: 20820097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.