BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1635837)

  • 1. Taurine and osmoregulation. IV. Cerebral taurine transport is increased in rats with hypernatremic dehydration.
    Trachtman H; Futterweit S; del Pizzo R
    Pediatr Res; 1992 Jul; 32(1):118-24. PubMed ID: 1635837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral taurine transport is increased during streptozocin-induced diabetes in rats.
    Trachtman H; Futterweit S; Sturman JA
    Diabetes; 1992 Sep; 41(9):1130-40. PubMed ID: 1386821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration.
    Trachtman H; Barbour R; Sturman JA; Finberg L
    Pediatr Res; 1988 Jan; 23(1):35-9. PubMed ID: 3340441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurine and osmoregulation. II. Administration of taurine analogues affords cerebral osmoprotection during chronic hypernatremic dehydration.
    Trachtman H; Del Pizzo R; Sturman JA; Huxtable RJ; Finberg L
    Am J Dis Child; 1988 Nov; 142(11):1194-8. PubMed ID: 3177325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine.
    Uchida S; Nakanishi T; Kwon HM; Preston AS; Handler JS
    J Clin Invest; 1991 Aug; 88(2):656-62. PubMed ID: 1864974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased lipid fluidity in synaptosomes from brains of hyperosmolal rats.
    Medow MS; Kletter LB; Trachtman H
    Biochim Biophys Acta; 1994 Aug; 1193(2):323-9. PubMed ID: 8054354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Taurine as a regulator of fluid-electrolyte balance and arterial pressure].
    Ciechanowska B
    Ann Acad Med Stetin; 1997; 43():129-42. PubMed ID: 9471912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent, high-affinity taurine transport into rat brain synaptosomes.
    Meiners BA; Speth RC; Bresolin N; Huxtable RJ; Yamamura HI
    Fed Proc; 1980 Jul; 39(9):2695-700. PubMed ID: 6105097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of organic osmolytes in the response of cultured astrocytes to hyperosmolarity.
    Hijab S; Havalad S; Snyder AK
    Am J Ther; 2011 Sep; 18(5):366-70. PubMed ID: 20093923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet taurine concentration and uptake in the Brattleboro diabetes insipidus rat.
    Nieminen ML; Tuomisto L; Solatunturi E
    Acta Med Okayama; 1996 Aug; 50(4):203-10. PubMed ID: 8874582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral cell volume regulation during hypernatremia in developing rats.
    Trachtman H; Yancey PH; Gullans SR
    Brain Res; 1995 Sep; 693(1-2):155-62. PubMed ID: 8653403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taurine and osmoregulation. III. Taurine deficiency protects against cerebral edema during acute hyponatremia.
    Trachtman H; del Pizzo R; Sturman JA
    Pediatr Res; 1990 Jan; 27(1):85-8. PubMed ID: 2296475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of sodium- and chloride-dependent taurine transport in human keratinocytes.
    Grafe F; Wohlrab W; Neubert RH; Brandsch M
    Eur J Pharm Biopharm; 2004 Mar; 57(2):337-41. PubMed ID: 15018993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypotaurine uptake by the retina.
    Pasantes-Morales H; Morán J; Fellman JH
    J Neurosci Res; 1986; 15(1):101-9. PubMed ID: 3959126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function and regulation of taurine transport at the inner blood-retinal barrier.
    Tomi M; Terayama T; Isobe T; Egami F; Morito A; Kurachi M; Ohtsuki S; Kang YS; Terasaki T; Hosoya K
    Microvasc Res; 2007 Mar; 73(2):100-6. PubMed ID: 17137607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative roles of external taurine concentration and medium osmolality in the regulation of taurine transport in LLC-PK1 and MDCK cells.
    Jones DP; Miller LA; Chesney RW
    Pediatr Res; 1995 Feb; 37(2):227-32. PubMed ID: 7537366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental aspects of renal beta-amino acid transport. V: Brush border membrane transport in nursing animals--effect of age and diet.
    Chesney RW; Gusowski N; Zeilkovic I; Padilla M
    Pediatr Res; 1986 Sep; 20(9):890-4. PubMed ID: 3748661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on human placental beta-alanine and taurine transport mechanism (using microvillous membrane vesicles].
    Iioka H; Moriyama I; Akasaki M; Itoh K; Hino K; Kato Y; Okamura Y; Itani Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Jun; 39(6):947-51. PubMed ID: 3112294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport.
    Schousboe A; Sánchez Olea R; Morán J; Pasantes-Morales H
    J Neurosci Res; 1991 Dec; 30(4):661-5. PubMed ID: 1787540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity.
    Grieve A; Butcher SP; Griffiths R
    J Neurosci Res; 1992 May; 32(1):60-8. PubMed ID: 1352830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.