These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 163600)

  • 1. Porcine malignant hyperthermia: effects of halothane on mitochondrial respiration and calcium accumulation.
    Britt BA; Endrenyi L; Cadman DL; Fan HM; Fung HY
    Anesthesiology; 1975 Mar; 42(3):292-300. PubMed ID: 163600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A halothane-induced biochemical defect in muscle of normal and malignant hyperthermia-susceptible Landrace pigs.
    Mitchell G; Heffron JJ; van Rensburg AJ
    Anesth Analg; 1980 Apr; 59(4):250-6. PubMed ID: 7189363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeabilised skeletal muscle reveals mitochondrial deficiency in malignant hyperthermia-susceptible individuals.
    Chang L; Daly C; Miller DM; Allen PD; Boyle JP; Hopkins PM; Shaw MA
    Br J Anaesth; 2019 May; 122(5):613-621. PubMed ID: 30916033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial calcium transport and calcium-activated phospholipase in porcine malignant hyperthermia.
    Cheah KS; Cheah AM
    Biochim Biophys Acta; 1981 Jan; 634(1):70-84. PubMed ID: 7470500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porcine malignant hyperthermia: halothane effects on force generation in skeletal muscles.
    Gallant EM; Goettl VM
    Muscle Nerve; 1989 Jan; 12(1):56-63. PubMed ID: 2747737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of halothane and methoxyflurane on rat skeletal muscle mitochondria.
    Britt BA; Kalow W; Endrenyi L
    Biochem Pharmacol; 1972 Apr; 21(8):1159-69. PubMed ID: 4338307
    [No Abstract]   [Full Text] [Related]  

  • 7. Anesthetics and mitochondrial respiration.
    Nahrwold ML; Cohen PJ
    Clin Anesth; 1975; 11(1):25-44. PubMed ID: 235376
    [No Abstract]   [Full Text] [Related]  

  • 8. Porcine malignant hyperthermia: effects of temperature and extracellular calcium concentration on halothane-induced contracture of susceptible skeletal muscle.
    Nelson TE; Bedell DM; Jones EW
    Anesthesiology; 1975 Mar; 42(3):301-6. PubMed ID: 1115384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of nitrous oxide on oxygen consumption by isolated cerebral cortex mitochondria.
    Becker GL; Pelligrino DA; Miletich DJ; Albrecht RF
    Anesth Analg; 1986 Apr; 65(4):355-9. PubMed ID: 3006553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the calcium antagonist, TMB-8 on halothane and on caffeine contractures of malignant hyperthermia susceptible skeletal muscle.
    Williams JH; Holland M; Lee JC
    Res Commun Chem Pathol Pharmacol; 1990 Jun; 68(3):387-90. PubMed ID: 2385762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine malignant hyperthermia susceptibility: halothane-induced increase in cytoplasmic free calcium in lymphocytes.
    O'Brien PJ; Kalow BI; Brown BD; Lumsden JH; Jacobs RM
    Am J Vet Res; 1989 Jan; 50(1):131-5. PubMed ID: 2919818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium uptake into muscle of pigs susceptible to malignant hyperthermia: in vitro and in vivo studies with and without halothane.
    Britt BA; Endrenyi L; Cadman DL
    Br J Anaesth; 1975 Jun; 47(6):650-3. PubMed ID: 238550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible mechanism for induction of porcine malignant hyperthermia syndrome.
    Eikelenboom G; Sybesma W
    J Anim Sci; 1974 Mar; 38(3):504-6. PubMed ID: 4819543
    [No Abstract]   [Full Text] [Related]  

  • 14. Impairment of ATP-linked reactions in mitochondria isolated from skeletal muscle of halothane-sensitive pigs.
    Ayoub S; Monin G; Rock E; Younes A
    Cell Biochem Funct; 1990 Oct; 8(4):205-10. PubMed ID: 2272118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malignant hyperthermia: effects of halothane on the surface membrane.
    Iaizzo PA; Lehmann-Horn F; Taylor SR; Gallant EM
    Muscle Nerve; 1989 Mar; 12(3):178-83. PubMed ID: 2725547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphocyte-based determination of susceptibility to malignant hyperthermia: a pilot study in swine.
    Bina S; Capacchione J; Muldoon S; Bayarsaikhan M; Bunger R
    Anesthesiology; 2010 Oct; 113(4):917-24. PubMed ID: 20823761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of azide in mitochondria and the effect of azide on energy metabolism.
    Zvyagilskaya RA; Bogucka K; Wojtczak L
    Acta Biochim Pol; 1969; 16(2):163-73. PubMed ID: 4310370
    [No Abstract]   [Full Text] [Related]  

  • 20. The respiratory effects of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates.
    Ellard JP; McCudden CR; Tanega C; James KA; Ratkovic S; Staples JF; Wagner GF
    Mol Cell Endocrinol; 2007 Jan; 264(1-2):90-101. PubMed ID: 17092635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.