These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 16360192)
1. Microbial source tracking using host specific FAME profiles of fecal coliforms. Duran M; Haznedaroğlu BZ; Zitomer DH Water Res; 2006 Jan; 40(1):67-74. PubMed ID: 16360192 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic characterization of Escherichia coli through whole-cell fatty acid profiling to investigate host specificity. Haznedaroglu BZ; Yurtsever D; Lefkowitz JR; Duran M Water Res; 2007 Feb; 41(4):803-9. PubMed ID: 17234236 [TBL] [Abstract][Full Text] [Related]
3. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Duran M; Yurtsever D; Dunaev T Water Sci Technol; 2009; 60(10):2659-68. PubMed ID: 19923772 [TBL] [Abstract][Full Text] [Related]
4. Discriminant analysis of fecal bacterial species composition for use as a phenotypic microbial source tracking method. Evenson CJ; Strevett KA Res Microbiol; 2006 Jun; 157(5):437-44. PubMed ID: 16725314 [TBL] [Abstract][Full Text] [Related]
5. Microbial source tracking by DNA sequence analysis of the Escherichia coli malate dehydrogenase gene. Ivanetich KM; Hsu PH; Wunderlich KM; Messenger E; Walkup WG; Scott TM; Lukasik J; Davis J J Microbiol Methods; 2006 Dec; 67(3):507-26. PubMed ID: 16973226 [TBL] [Abstract][Full Text] [Related]
6. Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assays. Jenkins MW; Tiwari S; Lorente M; Gichaba CM; Wuertz S Water Res; 2009 Nov; 43(19):4956-66. PubMed ID: 19692107 [TBL] [Abstract][Full Text] [Related]
7. Microbial source tracking in a rural watershed dominated by cattle. Graves AK; Hagedorn C; Brooks A; Hagedorn RL; Martin E Water Res; 2007 Aug; 41(16):3729-39. PubMed ID: 17582454 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. Harwood VJ; Wiggins B; Hagedorn C; Ellender RD; Gooch J; Kern J; Samadpour M; Chapman AC; Robinson BJ; Thompson BC J Water Health; 2003 Dec; 1(4):153-66. PubMed ID: 15382721 [TBL] [Abstract][Full Text] [Related]
9. Source specific fecal bacteria modeling using soil and water assessment tool model. Parajuli PB; Mankin KR; Barnes PL Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Fremaux B; Gritzfeld J; Boa T; Yost CK Water Res; 2009 Nov; 43(19):4838-49. PubMed ID: 19604534 [TBL] [Abstract][Full Text] [Related]
11. Considerations when using discriminant function analysis of antimicrobial resistance profiles to identify sources of fecal contamination of surface water in Michigan. Kaneene JB; Miller R; Sayah R; Johnson YJ; Gilliland D; Gardiner JC Appl Environ Microbiol; 2007 May; 73(9):2878-90. PubMed ID: 17337537 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Escherichia coli isolates from different fecal sources by means of classification tree analysis of fatty acid methyl ester (FAME) profiles. Seurinck S; Deschepper E; Deboch B; Verstraete W; Siciliano S Environ Monit Assess; 2006 Mar; 114(1-3):433-45. PubMed ID: 16570218 [TBL] [Abstract][Full Text] [Related]
13. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays. Bonkosky M; Hernández-Delgado EA; Sandoz B; Robledo IE; Norat-Ramírez J; Mattei H Mar Pollut Bull; 2009 Jan; 58(1):45-54. PubMed ID: 18952244 [TBL] [Abstract][Full Text] [Related]
14. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Kildare BJ; Leutenegger CM; McSwain BS; Bambic DG; Rajal VB; Wuertz S Water Res; 2007 Aug; 41(16):3701-15. PubMed ID: 17644149 [TBL] [Abstract][Full Text] [Related]
15. Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Kuntz RL; Hartel PG; Rodgers K; Segars WI Water Res; 2004 Sep; 38(16):3551-7. PubMed ID: 15325181 [TBL] [Abstract][Full Text] [Related]
16. Deer diet affects ribotype diversity of Escherichia coli for bacterial source tracking. Hartel PG; Summer JD; Segars WI Water Res; 2003 Jul; 37(13):3263-8. PubMed ID: 14509714 [TBL] [Abstract][Full Text] [Related]
17. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources. Hassan WM; Ellender RD; Wang SY J Appl Microbiol; 2007 Feb; 102(2):591-8. PubMed ID: 17241366 [TBL] [Abstract][Full Text] [Related]
18. Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Scott TM; Jenkins TM; Lukasik J; Rose JB Environ Sci Technol; 2005 Jan; 39(1):283-7. PubMed ID: 15667106 [TBL] [Abstract][Full Text] [Related]
19. Fecal source tracking, the indicator paradigm, and managing water quality. Field KG; Samadpour M Water Res; 2007 Aug; 41(16):3517-38. PubMed ID: 17643471 [TBL] [Abstract][Full Text] [Related]
20. Fatty acid analysis as a chemotaxonomic tool for taxonomic and epidemiological characterization of four fish pathogenic Tenacibaculum species. Piñeiro-Vidal M; Pazos F; Santos Y Lett Appl Microbiol; 2008 May; 46(5):548-54. PubMed ID: 18363654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]