These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 16360241)
1. The molecular dynamics of osteoclast adhesions. Luxenburg C; Addadi L; Geiger B Eur J Cell Biol; 2006 Apr; 85(3-4):203-11. PubMed ID: 16360241 [TBL] [Abstract][Full Text] [Related]
2. Involvement of the Src-cortactin pathway in podosome formation and turnover during polarization of cultured osteoclasts. Luxenburg C; Parsons JT; Addadi L; Geiger B J Cell Sci; 2006 Dec; 119(Pt 23):4878-88. PubMed ID: 17105771 [TBL] [Abstract][Full Text] [Related]
3. Podosome and sealing zone: specificity of the osteoclast model. Jurdic P; Saltel F; Chabadel A; Destaing O Eur J Cell Biol; 2006 Apr; 85(3-4):195-202. PubMed ID: 16546562 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. Lakkakorpi PT; Väänänen HK J Bone Miner Res; 1991 Aug; 6(8):817-26. PubMed ID: 1664645 [TBL] [Abstract][Full Text] [Related]
5. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882 [TBL] [Abstract][Full Text] [Related]
6. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Saltel F; Chabadel A; Bonnelye E; Jurdic P Eur J Cell Biol; 2008 Sep; 87(8-9):459-68. PubMed ID: 18294724 [TBL] [Abstract][Full Text] [Related]
7. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. Akisaka T; Yoshida H; Inoue S; Shimizu K J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700 [TBL] [Abstract][Full Text] [Related]
9. Cytoskeletal changes in osteoclasts during the resorption cycle. Lakkakorpi PT; Väänänen HK Microsc Res Tech; 1996 Feb; 33(2):171-81. PubMed ID: 8845516 [TBL] [Abstract][Full Text] [Related]
10. Calcitonin induces podosome disassembly and detachment of osteoclasts by modulating Pyk2 and Src activities. Shyu JF; Shih C; Tseng CY; Lin CH; Sun DT; Liu HT; Tsung HC; Chen TH; Lu RB Bone; 2007 May; 40(5):1329-42. PubMed ID: 17321230 [TBL] [Abstract][Full Text] [Related]
11. The distribution of podosomes in osteoclasts cultured on bone laminae: effect of retinol. Zambonin-Zallone A; Teti A; Carano A; Marchisio PC J Bone Miner Res; 1988 Oct; 3(5):517-23. PubMed ID: 3195364 [TBL] [Abstract][Full Text] [Related]
12. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Akisaka T; Yoshida H; Suzuki R; Takama K Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726 [TBL] [Abstract][Full Text] [Related]
13. Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption. Granot-Attas S; Elson A Eur J Cell Biol; 2008 Sep; 87(8-9):479-90. PubMed ID: 18342392 [TBL] [Abstract][Full Text] [Related]
14. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts. Takito J; Nakamura M; Yoda M; Tohmonda T; Uchikawa S; Horiuchi K; Toyama Y; Chiba K J Cell Sci; 2012 Feb; 125(Pt 3):662-72. PubMed ID: 22349694 [TBL] [Abstract][Full Text] [Related]
15. The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Brazier H; Pawlak G; Vives V; Blangy A Int J Biochem Cell Biol; 2009 Jun; 41(6):1391-401. PubMed ID: 19135548 [TBL] [Abstract][Full Text] [Related]
16. Organization of osteoclast microfilaments during the attachment to bone surface in vitro. Lakkakorpi P; Tuukkanen J; Hentunen T; Järvelin K; Väänänen K J Bone Miner Res; 1989 Dec; 4(6):817-25. PubMed ID: 2692403 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of bone resorption in vitro by a peptide containing the cadherin cell adhesion recognition sequence HAV is due to prevention of sealing zone formation. Ilvesaro JM; Lakkakorpi PT; Väänänen HK Exp Cell Res; 1998 Jul; 242(1):75-83. PubMed ID: 9665804 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructural analysis of apatite-degrading capability of extended invasive podosomes in resorbing osteoclasts. Akisaka T; Yoshida A Micron; 2016 Sep; 88():37-47. PubMed ID: 27323283 [TBL] [Abstract][Full Text] [Related]
20. Fimbrin in podosomes of monocyte-derived osteoclasts. Babb SG; Matsudaira P; Sato M; Correia I; Lim SS Cell Motil Cytoskeleton; 1997; 37(4):308-25. PubMed ID: 9258504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]