BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16360241)

  • 21. Roles of microfilaments and microtubules in paxillin dynamics.
    Hu YL; Haga JH; Miao H; Wang Y; Li YS; Chien S
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1463-71. PubMed ID: 16920067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of podosomes by integrin alphavbeta3 and Rho GTPase-facilitated phosphoinositide signaling.
    Chellaiah MA
    Eur J Cell Biol; 2006 Apr; 85(3-4):311-7. PubMed ID: 16460838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunolocalization of beta 3 subunit of integrins in osteoclast membrane.
    Teti A; Grano M; Carano A; Colucci S; Zambonin Zallone A
    Boll Soc Ital Biol Sper; 1989 Nov; 65(11):1031-7. PubMed ID: 2629822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tensin 3 is a new partner of Dock5 that controls osteoclast podosome organization and activity.
    Touaitahuata H; Morel A; Urbach S; Mateos-Langerak J; de Rossi S; Blangy A
    J Cell Sci; 2016 Sep; 129(18):3449-61. PubMed ID: 27505886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.
    Takito J; Inoue S; Nakamura M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29587415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Podosome organization drives osteoclast-mediated bone resorption.
    Georgess D; Machuca-Gayet I; Blangy A; Jurdic P
    Cell Adh Migr; 2014; 8(3):191-204. PubMed ID: 24714644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions.
    Zaidel-Bar R; Milo R; Kam Z; Geiger B
    J Cell Sci; 2007 Jan; 120(Pt 1):137-48. PubMed ID: 17164291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane.
    Akisaka T; Yoshida H; Suzuki R
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Internal dynamics of actin structures involved in the cell motility and adhesion: Modeling of the podosomes at the molecular level.
    Hu S; Biben T; Wang X; Jurdic P; Géminard JC
    J Theor Biol; 2011 Feb; 270(1):25-30. PubMed ID: 21075123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity.
    Teti A; Marchisio PC; Zallone AZ
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C1-7. PubMed ID: 1858848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Actin-Binding Protein Cofilin and Its Interaction With Cortactin Are Required for Podosome Patterning in Osteoclasts and Bone Resorption In Vivo and In Vitro.
    Zalli D; Neff L; Nagano K; Shin NY; Witke W; Gori F; Baron R
    J Bone Miner Res; 2016 Sep; 31(9):1701-12. PubMed ID: 27064822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Podosomes are dispensable for osteoclast differentiation and migration.
    Touaitahuata H; Planus E; Albiges-Rizo C; Blangy A; Pawlak G
    Eur J Cell Biol; 2013; 92(4-5):139-49. PubMed ID: 23598086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eosinophils adhere to vascular cell adhesion molecule-1 via podosomes.
    Johansson MW; Lye MH; Barthel SR; Duffy AK; Annis DS; Mosher DF
    Am J Respir Cell Mol Biol; 2004 Oct; 31(4):413-22. PubMed ID: 15220135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice.
    Gil-Henn H; Destaing O; Sims NA; Aoki K; Alles N; Neff L; Sanjay A; Bruzzaniti A; De Camilli P; Baron R; Schlessinger J
    J Cell Biol; 2007 Sep; 178(6):1053-64. PubMed ID: 17846174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory signals for endothelial podosome formation.
    Billottet C; Rottiers P; Tatin F; Varon C; Reuzeau E; Maître JL; Saltel F; Moreau V; Génot E
    Eur J Cell Biol; 2008 Sep; 87(8-9):543-54. PubMed ID: 18397815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Apatite-mediated actin dynamics in resorbing osteoclasts.
    Saltel F; Destaing O; Bard F; Eichert D; Jurdic P
    Mol Biol Cell; 2004 Dec; 15(12):5231-41. PubMed ID: 15371537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CSF-1 and PI 3-kinase regulate podosome distribution and assembly in macrophages.
    Wheeler AP; Smith SD; Ridley AJ
    Cell Motil Cytoskeleton; 2006 Mar; 63(3):132-40. PubMed ID: 16421924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks.
    Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N
    Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein.
    Destaing O; Saltel F; Géminard JC; Jurdic P; Bard F
    Mol Biol Cell; 2003 Feb; 14(2):407-16. PubMed ID: 12589043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The F-actin modulator SWAP-70 controls podosome patterning in osteoclasts.
    Roscher A; Hasegawa T; Dohnke S; Ocaña-Morgner C; Amizuka N; Jessberger R; Garbe AI
    Bone Rep; 2016 Dec; 5():214-221. PubMed ID: 28580389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.