BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16360643)

  • 1. Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440.
    Lee Y; Peña-Llopis S; Kang YS; Shin HD; Demple B; Madsen EL; Jeon CO; Park W
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1246-54. PubMed ID: 16360643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of fprB (ferredoxin-NADP+ reductase) in Pseudomonas putida KT2440.
    Lee Y; Yeom J; Kang YS; Kim J; Sung JS; Jeon CO; Park W
    J Microbiol Biotechnol; 2007 Sep; 17(9):1504-12. PubMed ID: 18062229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli.
    Park W; Peña-Llopis S; Lee Y; Demple B
    Biochem Biophys Res Commun; 2006 Mar; 341(1):51-6. PubMed ID: 16412384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440.
    Yeom S; Yeom J; Park W
    Microbiology (Reading); 2010 May; 156(Pt 5):1487-1496. PubMed ID: 20056701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FinR Regulates Expression of
    Xiao Y; Zhu W; Liu H; Nie H; Chen W; Huang Q
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440.
    Xiao Y; Zhu W; He M; Nie H; Chen W; Huang Q
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9077-9089. PubMed ID: 31673742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo interactions of ferredoxin-NADP+ reductases in Pseudomonas putida.
    Yeom J; Jeon CO; Madsen EL; Park W
    J Biochem; 2009 Apr; 145(4):481-91. PubMed ID: 19122206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray.
    Yuste L; Hervás AB; Canosa I; Tobes R; Jiménez JI; Nogales J; Pérez-Pérez MM; Santero E; Díaz E; Ramos JL; de Lorenzo V; Rojo F
    Environ Microbiol; 2006 Jan; 8(1):165-77. PubMed ID: 16343331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of the Pseudomonas putida KT2440 dsbA gene promotes extracellular matrix production and biofilm formation.
    Lee Y; Oh S; Park W
    FEMS Microbiol Lett; 2009 Aug; 297(1):38-48. PubMed ID: 19500143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa.
    Boonma S; Romsang A; Duang-Nkern J; Atichartpongkul S; Trinachartvanit W; Vattanaviboon P; Mongkolsuk S
    PLoS One; 2017; 12(2):e0172071. PubMed ID: 28187184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase.
    Yeom J; Jeon CO; Madsen EL; Park W
    J Bacteriol; 2009 Mar; 191(5):1472-9. PubMed ID: 19114475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper and cadmium: responses in Pseudomonas putida KT2440.
    Miller CD; Pettee B; Zhang C; Pabst M; McLean JE; Anderson AJ
    Lett Appl Microbiol; 2009 Dec; 49(6):775-83. PubMed ID: 19843215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library.
    Molina-Henares MA; de la Torre J; García-Salamanca A; Molina-Henares AJ; Herrera MC; Ramos JL; Duque E
    Environ Microbiol; 2010 Jun; 12(6):1468-85. PubMed ID: 20158506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The alternative sigma factor, sigmaS, affects polyhydroxyalkanoate metabolism in Pseudomonas putida.
    Raiger-Iustman LJ; Ruiz JA
    FEMS Microbiol Lett; 2008 Jul; 284(2):218-24. PubMed ID: 18498401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0.
    Aranda-Olmedo I; Ramos JL; Marqués S
    Appl Environ Microbiol; 2005 Aug; 71(8):4191-8. PubMed ID: 16085802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor.
    Shimazu M; Nguyen A; Mulchandani A; Chen W
    Biotechnol Prog; 2003; 19(5):1612-4. PubMed ID: 14524726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida.
    Hishinuma S; Yuki M; Fujimura M; Fukumori F
    Environ Microbiol; 2006 Dec; 8(12):2115-24. PubMed ID: 17107553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440.
    Renzi F; Rescalli E; Galli E; Bertoni G
    Environ Microbiol; 2010 Jan; 12(1):254-63. PubMed ID: 19788653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes.
    Velázquez F; de Lorenzo V; Valls M
    Environ Microbiol; 2006 Apr; 8(4):591-602. PubMed ID: 16584471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases.
    Morales G; Ugidos A; Rojo F
    Environ Microbiol; 2006 Oct; 8(10):1764-74. PubMed ID: 16958757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.