These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16361227)

  • 1. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism.
    Rawls JM
    Genetics; 2006 Mar; 172(3):1665-74. PubMed ID: 16361227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dominant mutation Suppressor of black indicates that de novo pyrimidine biosynthesis is involved in the Drosophila tan pigmentation pathway.
    Piskur J; Kolbak D; Søndergaard L; Pedersen MB
    Mol Gen Genet; 1993 Nov; 241(3-4):335-40. PubMed ID: 7902526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis.
    Zrenner R; Riegler H; Marquard CR; Lange PR; Geserick C; Bartosz CE; Chen CT; Slocum RD
    New Phytol; 2009; 183(1):117-132. PubMed ID: 19413687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity.
    Gojković Z; Sandrini MP; Piskur J
    Genetics; 2001 Jul; 158(3):999-1011. PubMed ID: 11454750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent functions through alternative splicing: the Drosophila CRMP gene in pyrimidine metabolism, brain, and behavior.
    Morris DH; Dubnau J; Park JH; Rawls JM
    Genetics; 2012 Aug; 191(4):1227-38. PubMed ID: 22649077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ß-ureidopropionase deficiency: phenotype, genotype and protein structural consequences in 16 patients.
    van Kuilenburg AB; Dobritzsch D; Meijer J; Krumpel M; Selim LA; Rashed MS; Assmann B; Meinsma R; Lohkamp B; Ito T; Abeling NG; Saito K; Eto K; Smitka M; Engvall M; Zhang C; Xu W; Zoetekouw L; Hennekam RC
    Biochim Biophys Acta; 2012 Jul; 1822(7):1096-108. PubMed ID: 22525402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?
    Van Kuilenburg AB; Stroomer AE; Van Lenthe H; Abeling NG; Van Gennip AH
    Biochem J; 2004 Apr; 379(Pt 1):119-24. PubMed ID: 14705962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas putida PydR, a RutR-like transcriptional regulator, represses the dihydropyrimidine dehydrogenase gene in the pyrimidine reductive catabolic pathway.
    Hidese R; Mihara H; Kurihara T; Esaki N
    J Biochem; 2012 Oct; 152(4):341-6. PubMed ID: 22782928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic regulation of dihydropyrimidinase and its possible implication in altered uracil catabolism.
    Thomas HR; Ezzeldin HH; Guarcello V; Mattison LK; Fridley BL; Diasio RB
    Pharmacogenet Genomics; 2007 Nov; 17(11):973-87. PubMed ID: 18075467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic combination of mutations, including fs(1)pyrSu(b), rSu(b) and b, causes female sterility and reduces embryonic viability in Drosophila melanogaster.
    Piskur J; Gojković Z; Bahn E
    Mol Gen Genet; 1999 Apr; 261(3):553-7. PubMed ID: 10323237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene cluster involved in pyrimidine reductive catabolism from Brevibacillus agri NCHU1002.
    Kao CH; Hsu WH
    Biochem Biophys Res Commun; 2003 Apr; 303(3):848-54. PubMed ID: 12670488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inborn errors of pyrimidine degradation: clinical, biochemical and molecular aspects.
    van Gennip AH; Abeling NG; Vreken P; van Kuilenburg AB
    J Inherit Metab Dis; 1997 Jun; 20(2):203-13. PubMed ID: 9211193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay.
    Traut TW; Loechel S
    Biochemistry; 1984 May; 23(11):2533-9. PubMed ID: 6433973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the phenotypes exhibited by rudimentary-like mutants of Drosophila melanogaster.
    Conner TW; Rawls JM
    Biochem Genet; 1982 Aug; 20(7-8):607-19. PubMed ID: 6814416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly.
    Lundgren S; Lohkamp B; Andersen B; Piskur J; Dobritzsch D
    J Mol Biol; 2008 Apr; 377(5):1544-59. PubMed ID: 18336837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary protein on pyrimidine-metabolizing enzymes in rats.
    Kaneko M; Fujimoto S; Kikugawa M; Kontani Y; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 1991 Oct; 37(5):517-28. PubMed ID: 1802976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymes of uracil catabolism in normal and neoplastic human tissues.
    Naguib FN; el Kouni MH; Cha S
    Cancer Res; 1985 Nov; 45(11 Pt 1):5405-12. PubMed ID: 3931905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of pyrimidine degradation enzymes in normal tissues.
    van Kuilenburg AB; van Lenthe H; van Gennip AH
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1211-4. PubMed ID: 17065093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-alanine transaminase activity in black and suppressor of black mutations of Drosophila melanogaster.
    Weber JP; Bolin RJ; Hixon MS; Sherald AF
    Biochim Biophys Acta; 1992 Jan; 1115(3):181-6. PubMed ID: 1739732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.