BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16361227)

  • 1. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism.
    Rawls JM
    Genetics; 2006 Mar; 172(3):1665-74. PubMed ID: 16361227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dominant mutation Suppressor of black indicates that de novo pyrimidine biosynthesis is involved in the Drosophila tan pigmentation pathway.
    Piskur J; Kolbak D; Søndergaard L; Pedersen MB
    Mol Gen Genet; 1993 Nov; 241(3-4):335-40. PubMed ID: 7902526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis.
    Zrenner R; Riegler H; Marquard CR; Lange PR; Geserick C; Bartosz CE; Chen CT; Slocum RD
    New Phytol; 2009; 183(1):117-132. PubMed ID: 19413687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity.
    Gojković Z; Sandrini MP; Piskur J
    Genetics; 2001 Jul; 158(3):999-1011. PubMed ID: 11454750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent functions through alternative splicing: the Drosophila CRMP gene in pyrimidine metabolism, brain, and behavior.
    Morris DH; Dubnau J; Park JH; Rawls JM
    Genetics; 2012 Aug; 191(4):1227-38. PubMed ID: 22649077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ß-ureidopropionase deficiency: phenotype, genotype and protein structural consequences in 16 patients.
    van Kuilenburg AB; Dobritzsch D; Meijer J; Krumpel M; Selim LA; Rashed MS; Assmann B; Meinsma R; Lohkamp B; Ito T; Abeling NG; Saito K; Eto K; Smitka M; Engvall M; Zhang C; Xu W; Zoetekouw L; Hennekam RC
    Biochim Biophys Acta; 2012 Jul; 1822(7):1096-108. PubMed ID: 22525402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?
    Van Kuilenburg AB; Stroomer AE; Van Lenthe H; Abeling NG; Van Gennip AH
    Biochem J; 2004 Apr; 379(Pt 1):119-24. PubMed ID: 14705962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas putida PydR, a RutR-like transcriptional regulator, represses the dihydropyrimidine dehydrogenase gene in the pyrimidine reductive catabolic pathway.
    Hidese R; Mihara H; Kurihara T; Esaki N
    J Biochem; 2012 Oct; 152(4):341-6. PubMed ID: 22782928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic regulation of dihydropyrimidinase and its possible implication in altered uracil catabolism.
    Thomas HR; Ezzeldin HH; Guarcello V; Mattison LK; Fridley BL; Diasio RB
    Pharmacogenet Genomics; 2007 Nov; 17(11):973-87. PubMed ID: 18075467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic combination of mutations, including fs(1)pyrSu(b), rSu(b) and b, causes female sterility and reduces embryonic viability in Drosophila melanogaster.
    Piskur J; Gojković Z; Bahn E
    Mol Gen Genet; 1999 Apr; 261(3):553-7. PubMed ID: 10323237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene cluster involved in pyrimidine reductive catabolism from Brevibacillus agri NCHU1002.
    Kao CH; Hsu WH
    Biochem Biophys Res Commun; 2003 Apr; 303(3):848-54. PubMed ID: 12670488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inborn errors of pyrimidine degradation: clinical, biochemical and molecular aspects.
    van Gennip AH; Abeling NG; Vreken P; van Kuilenburg AB
    J Inherit Metab Dis; 1997 Jun; 20(2):203-13. PubMed ID: 9211193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay.
    Traut TW; Loechel S
    Biochemistry; 1984 May; 23(11):2533-9. PubMed ID: 6433973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the phenotypes exhibited by rudimentary-like mutants of Drosophila melanogaster.
    Conner TW; Rawls JM
    Biochem Genet; 1982 Aug; 20(7-8):607-19. PubMed ID: 6814416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly.
    Lundgren S; Lohkamp B; Andersen B; Piskur J; Dobritzsch D
    J Mol Biol; 2008 Apr; 377(5):1544-59. PubMed ID: 18336837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary protein on pyrimidine-metabolizing enzymes in rats.
    Kaneko M; Fujimoto S; Kikugawa M; Kontani Y; Tamaki N
    J Nutr Sci Vitaminol (Tokyo); 1991 Oct; 37(5):517-28. PubMed ID: 1802976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymes of uracil catabolism in normal and neoplastic human tissues.
    Naguib FN; el Kouni MH; Cha S
    Cancer Res; 1985 Nov; 45(11 Pt 1):5405-12. PubMed ID: 3931905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of pyrimidine degradation enzymes in normal tissues.
    van Kuilenburg AB; van Lenthe H; van Gennip AH
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1211-4. PubMed ID: 17065093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-alanine transaminase activity in black and suppressor of black mutations of Drosophila melanogaster.
    Weber JP; Bolin RJ; Hixon MS; Sherald AF
    Biochim Biophys Acta; 1992 Jan; 1115(3):181-6. PubMed ID: 1739732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.