BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16361253)

  • 1. Critical elements of oligosaccharide acceptor substrates for the Pasteurella multocida hyaluronan synthase.
    Williams KJ; Halkes KM; Kamerling JP; DeAngelis PL
    J Biol Chem; 2006 Mar; 281(9):5391-7. PubMed ID: 16361253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase.
    DeAngelis PL
    J Biol Chem; 1999 Sep; 274(37):26557-62. PubMed ID: 10473619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceptor specificity of the Pasteurella hyaluronan and chondroitin synthases and production of chimeric glycosaminoglycans.
    Tracy BS; Avci FY; Linhardt RJ; DeAngelis PL
    J Biol Chem; 2007 Jan; 282(1):337-44. PubMed ID: 17099217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida.
    Jing W; DeAngelis PL
    Glycobiology; 2003 Oct; 13(10):661-71. PubMed ID: 12799342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide.
    Jing W; DeAngelis PL
    Glycobiology; 2000 Sep; 10(9):883-9. PubMed ID: 10988250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F.
    DeAngelis PL; Padgett-McCue AJ
    J Biol Chem; 2000 Aug; 275(31):24124-9. PubMed ID: 10818104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of PmHS1, a Pasteurella multocida heparosan synthase.
    Kane TA; White CL; DeAngelis PL
    J Biol Chem; 2006 Nov; 281(44):33192-7. PubMed ID: 16959770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer.
    Pummill PE; Kane TA; Kempner ES; DeAngelis PL
    Biochim Biophys Acta; 2007 Feb; 1770(2):286-90. PubMed ID: 17095162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel β1,4 N-acetylglucosaminyltransferase in de novo enzymatic synthesis of hyaluronic acid oligosaccharides.
    Sun JY; Deng JQ; Du RR; Xin SY; Cao YL; Lu Z; Guo XP; Wang FS; Sheng JZ
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5119-5129. PubMed ID: 37405432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative continuous assay for hyaluronan synthase.
    Krupa JC; Shaya D; Chi L; Linhardt RJ; Cygler M; Withers SG; Mort JS
    Anal Biochem; 2007 Feb; 361(2):218-25. PubMed ID: 17173853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the polymerization initiation and activity of Pasteurella multocida heparosan synthase PmHS2, an enzyme with glycosyltransferase and UDP-sugar hydrolase activity.
    Chavaroche AA; van den Broek LA; Springer J; Boeriu C; Eggink G
    J Biol Chem; 2011 Jan; 286(3):1777-85. PubMed ID: 21084307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D.
    DeAngelis PL; White CL
    J Biol Chem; 2002 Mar; 277(9):7209-13. PubMed ID: 11756462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts.
    Otto NJ; Green DE; Masuko S; Mayer A; Tanner ME; Linhardt RJ; DeAngelis PL
    J Biol Chem; 2012 Mar; 287(10):7203-12. PubMed ID: 22235128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoenzymatic synthesis with distinct Pasteurella heparosan synthases: monodisperse polymers and unnatural structures.
    Sismey-Ragatz AE; Green DE; Otto NJ; Rejzek M; Field RA; DeAngelis PL
    J Biol Chem; 2007 Sep; 282(39):28321-28327. PubMed ID: 17627940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end.
    Tlapak-Simmons VL; Baron CA; Gotschall R; Haque D; Canfield WM; Weigel PH
    J Biol Chem; 2005 Apr; 280(13):13012-8. PubMed ID: 15668242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation and sulfation of oligosaccharide substrates critically influence the activity of human beta1,4-galactosyltransferase 7 (GalT-I) and beta1,3-glucuronosyltransferase I (GlcAT-I) involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans.
    Gulberti S; Lattard V; Fondeur M; Jacquinet JC; Mulliert G; Netter P; Magdalou J; Ouzzine M; Fournel-Gigleux S
    J Biol Chem; 2005 Jan; 280(2):1417-25. PubMed ID: 15522873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers.
    Jing W; DeAngelis PL
    J Biol Chem; 2004 Oct; 279(40):42345-9. PubMed ID: 15299014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2.
    Chavaroche AA; Springer J; Kooy F; Boeriu C; Eggink G
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1881-91. PubMed ID: 19756580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases.
    Chavaroche AA; van den Broek LA; Boeriu C; Eggink G
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1199-210. PubMed ID: 22198719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors.
    DeAngelis PL; Oatman LC; Gay DF
    J Biol Chem; 2003 Sep; 278(37):35199-203. PubMed ID: 12840012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.