These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 16361254)
1. Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. Yan H; Zareen N; Levinger L J Biol Chem; 2006 Feb; 281(7):3926-35. PubMed ID: 16361254 [TBL] [Abstract][Full Text] [Related]
2. In vitro 3'-end endonucleolytic processing defect in a human mitochondrial tRNA(Ser(UCN)) precursor with the U7445C substitution, which causes non-syndromic deafness. Levinger L; Jacobs O; James M Nucleic Acids Res; 2001 Nov; 29(21):4334-40. PubMed ID: 11691920 [TBL] [Abstract][Full Text] [Related]
3. Effects of conserved D/T loop substitutions in the pre-tRNA substrate on tRNase Z catalysis. Hopkinson A; Levinger L RNA Biol; 2008; 5(2):104-11. PubMed ID: 18421255 [TBL] [Abstract][Full Text] [Related]
4. Pathogenesis-related mutations in the T-loops of human mitochondrial tRNAs affect 3' end processing and tRNA structure. Levinger L; Serjanov D RNA Biol; 2012 Mar; 9(3):283-91. PubMed ID: 22336717 [TBL] [Abstract][Full Text] [Related]
5. The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity. Takaku H; Minagawa A; Takagi M; Nashimoto M Nucleic Acids Res; 2004; 32(15):4429-38. PubMed ID: 15317868 [TBL] [Abstract][Full Text] [Related]
6. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding. Zareen N; Yan H; Hopkinson A; Levinger L J Mol Biol; 2005 Jul; 350(2):189-99. PubMed ID: 15935379 [TBL] [Abstract][Full Text] [Related]
7. Identification and sequence analysis of metazoan tRNA 3'-end processing enzymes tRNase Zs. Wang Z; Zheng J; Zhang X; Peng J; Liu J; Huang Y PLoS One; 2012; 7(9):e44264. PubMed ID: 22962606 [TBL] [Abstract][Full Text] [Related]
8. Partitioning of the nuclear and mitochondrial tRNA 3'-end processing activities between two different proteins in Schizosaccharomyces pombe. Zhang X; Zhao Q; Huang Y J Biol Chem; 2013 Sep; 288(38):27415-27422. PubMed ID: 23928301 [TBL] [Abstract][Full Text] [Related]
9. Functional conservation of tRNase ZL among Saccharomyces cerevisiae, Schizosaccharomyces pombe and humans. Zhao Z; Su W; Yuan S; Huang Y Biochem J; 2009 Aug; 422(3):483-92. PubMed ID: 19555350 [TBL] [Abstract][Full Text] [Related]
10. Two archaeal tRNase Z enzymes: similar but different. Späth B; Schubert S; Lieberoth A; Settele F; Schütz S; Fischer S; Marchfelder A Arch Microbiol; 2008 Sep; 190(3):301-8. PubMed ID: 18437358 [TBL] [Abstract][Full Text] [Related]
11. The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection. Minagawa A; Ishii R; Takaku H; Yokoyama S; Nashimoto M J Mol Biol; 2008 Aug; 381(2):289-99. PubMed ID: 18602113 [TBL] [Abstract][Full Text] [Related]
12. Involvement of human ELAC2 gene product in 3' end processing of mitochondrial tRNAs. Brzezniak LK; Bijata M; Szczesny RJ; Stepien PP RNA Biol; 2011; 8(4):616-26. PubMed ID: 21593607 [TBL] [Abstract][Full Text] [Related]
13. Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo. Dubrovsky EB; Dubrovskaya VA; Levinger L; Schiffer S; Marchfelder A Nucleic Acids Res; 2004; 32(1):255-62. PubMed ID: 14715923 [TBL] [Abstract][Full Text] [Related]
14. Disease-associated mutations in mitochondrial precursor tRNAs affect binding, m1R9 methylation, and tRNA processing by mtRNase P. Karasik A; Wilhelm CA; Fierke CA; Koutmos M RNA; 2021 Apr; 27(4):420-432. PubMed ID: 33380464 [TBL] [Abstract][Full Text] [Related]
15. Residues in two homology blocks on the amino side of the tRNase Z His domain contribute unexpectedly to pre-tRNA 3' end processing. Zareen N; Hopkinson A; Levinger L RNA; 2006 Jun; 12(6):1104-15. PubMed ID: 16618969 [TBL] [Abstract][Full Text] [Related]
16. The fission yeast Schizosaccharomyces pombe has two distinct tRNase Z(L)s encoded by two different genes and differentially targeted to the nucleus and mitochondria. Gan X; Yang J; Li J; Yu H; Dai H; Liu J; Huang Y Biochem J; 2011 Apr; 435(1):103-11. PubMed ID: 21208191 [TBL] [Abstract][Full Text] [Related]
17. Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease. Nashimoto M; Wesemann DR; Geary S; Tamura M; Kaspar RL Nucleic Acids Res; 1999 Jul; 27(13):2770-6. PubMed ID: 10373595 [TBL] [Abstract][Full Text] [Related]
18. The T loop structure is dispensable for substrate recognition by tRNase ZL. Shibata HS; Takaku H; Takagi M; Nashimoto M J Biol Chem; 2005 Jun; 280(23):22326-34. PubMed ID: 15824113 [TBL] [Abstract][Full Text] [Related]
19. The making of tRNAs and more - RNase P and tRNase Z. Hartmann RK; Gössringer M; Späth B; Fischer S; Marchfelder A Prog Mol Biol Transl Sci; 2009; 85():319-68. PubMed ID: 19215776 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial ribonuclease P activity of Trypanosoma brucei. Salavati R; Panigrahi AK; Stuart KD Mol Biochem Parasitol; 2001 Jun; 115(1):109-17. PubMed ID: 11377745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]