BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16361339)

  • 1. Dehydration of ribonucleotides catalyzed by ribonucleotide reductase: the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    Biophys J; 2006 Mar; 90(6):2109-19. PubMed ID: 16361339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonucleotide activation by enzyme ribonucleotide reductase: understanding the role of the enzyme.
    Cerqueira NM; Fernandes PA; Eriksson LA; Ramos MJ
    J Comput Chem; 2004 Dec; 25(16):2031-7. PubMed ID: 15481089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of hydrogen bonding interactions on the C-H bond activation step in class I ribonucleotide reductases.
    Zipse H
    Org Biomol Chem; 2003 Feb; 1(4):692-9. PubMed ID: 12929456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational enzymatic catalysis.
    Ramos MJ; Fernandes PA
    Acc Chem Res; 2008 Jun; 41(6):689-98. PubMed ID: 18465885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, function, and mechanism of ribonucleotide reductases.
    Kolberg M; Strand KR; Graff P; Andersson KK
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):1-34. PubMed ID: 15158709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase.
    Larsson KM; Jordan A; Eliasson R; Reichard P; Logan DT; Nordlund P
    Nat Struct Mol Biol; 2004 Nov; 11(11):1142-9. PubMed ID: 15475969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class I ribonucleotide reductase revisited: the effect of removing a proton on Glu441.
    Pelmenschikov V; Cho KB; Siegbahn PE
    J Comput Chem; 2004 Feb; 25(3):311-21. PubMed ID: 14696066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleotide reductases and radical reactions.
    Fontecave M
    Cell Mol Life Sci; 1998 Jul; 54(7):684-95. PubMed ID: 9711234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme ribonucleotide reductase: unraveling an enigmatic paradigm of enzyme inhibition by furanone derivatives.
    Cerqueira NM; Fernandes PA; Ramos MJ
    J Phys Chem B; 2006 Oct; 110(42):21272-81. PubMed ID: 17048956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and theoretical approaches for studying radical reactions in class I ribonucleotide reductase.
    Bennati M; Lendzian F; Schmittel M; Zipse H
    Biol Chem; 2005 Oct; 386(10):1007-22. PubMed ID: 16218873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleotide reductases: substrate specificity by allostery.
    Reichard P
    Biochem Biophys Res Commun; 2010 May; 396(1):19-23. PubMed ID: 20494104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation.
    Xu H; Faber C; Uchiki T; Fairman JW; Racca J; Dealwis C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4022-7. PubMed ID: 16537479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+.
    Arnold JJ; Gohara DW; Cameron CE
    Biochemistry; 2004 May; 43(18):5138-48. PubMed ID: 15122879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ribonucleotide reductase--transition enzymes from RNA metabolism to DNA metabolism].
    Kollarova M; Labudova O
    Biokhimiia; 1991 Dec; 56(12):2115-24. PubMed ID: 1725494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of the anaerobic Escherichia coli ribonucleotide reductase investigated with nuclear magnetic resonance spectroscopy.
    Eliasson R; Reichard P; Mulliez E; Ollagnier S; Fontecave M; Liepinsh E; Otting G
    Biochem Biophys Res Commun; 1995 Sep; 214(1):28-35. PubMed ID: 7669047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stable FeIII-FeIV replacement of tyrosyl radical in a class I ribonucleotide reductase.
    Voevodskaya N; Lendzian F; Gräslund A
    Biochem Biophys Res Commun; 2005 May; 330(4):1213-6. PubMed ID: 15823572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of ribonucleotide reductase inhibitors: an appealing target in anti-tumour therapy.
    Cerqueira NM; Pereira S; Fernandes PA; Ramos MJ
    Curr Med Chem; 2005; 12(11):1283-94. PubMed ID: 15974997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH Rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway.
    Seyedsayamdost MR; Yee CS; Reece SY; Nocera DG; Stubbe J
    J Am Chem Soc; 2006 Feb; 128(5):1562-8. PubMed ID: 16448127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.