These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. Yamamoto A; Mizukami Y; Sakurai H J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Hashikawa N; Sakurai H Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761 [TBL] [Abstract][Full Text] [Related]
4. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844 [TBL] [Abstract][Full Text] [Related]
5. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase. Sakurai H; Hashikawa N; Imazu H; Fukasawa T Genes Cells; 2003 Dec; 8(12):951-61. PubMed ID: 14750950 [TBL] [Abstract][Full Text] [Related]
6. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. Hashikawa N; Yamamoto N; Sakurai H J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668 [TBL] [Abstract][Full Text] [Related]
7. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Bulman AL; Nelson HC Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. Peffer S; Gonçalves D; Morano KA J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354 [TBL] [Abstract][Full Text] [Related]
9. The DNA-binding domain of yeast Hsf1 regulates both DNA-binding and transcriptional activities. Yamamoto A; Sakurai H Biochem Biophys Res Commun; 2006 Aug; 346(4):1324-9. PubMed ID: 16806072 [TBL] [Abstract][Full Text] [Related]
10. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Seymour IJ; Piper PW Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703 [TBL] [Abstract][Full Text] [Related]
11. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. Liu XD; Liu PC; Santoro N; Thiele DJ EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828 [TBL] [Abstract][Full Text] [Related]
12. Modulation of human heat shock factor trimerization by the linker domain. Liu PC; Thiele DJ J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080 [TBL] [Abstract][Full Text] [Related]
13. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome. Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327 [TBL] [Abstract][Full Text] [Related]
14. CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae. Cho BR; Lee P; Hahn JS Mol Microbiol; 2014 Jul; 93(2):306-16. PubMed ID: 24894977 [TBL] [Abstract][Full Text] [Related]
15. A novel domain of the yeast heat shock factor that regulates its activation function. Sakurai H; Fukasawa T Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649 [TBL] [Abstract][Full Text] [Related]
16. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor. Chen T; Parker CS Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569 [TBL] [Abstract][Full Text] [Related]
17. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
19. The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Conlin LK; Nelson HC Mol Cell Biol; 2007 Feb; 27(4):1505-15. PubMed ID: 17145780 [TBL] [Abstract][Full Text] [Related]