BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16361710)

  • 1. Mutational analysis of the ras converting enzyme reveals a requirement for glutamate and histidine residues.
    Plummer LJ; Hildebrandt ER; Porter SB; Rogers VA; McCracken J; Schmidt WK
    J Biol Chem; 2006 Feb; 281(8):4596-605. PubMed ID: 16361710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolytic processing of certain CaaX motifs can occur in the absence of the Rce1p and Ste24p CaaX proteases.
    Krishnankutty RK; Kukday SS; Castleberry AJ; Breevoort SR; Schmidt WK
    Yeast; 2009 Aug; 26(8):451-63. PubMed ID: 19504624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p.
    Dolence JM; Steward LE; Dolence EK; Wong DH; Poulter CD
    Biochemistry; 2000 Apr; 39(14):4096-104. PubMed ID: 10747800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies of Zmpste24-deficient mice.
    Leung GK; Schmidt WK; Bergo MO; Gavino B; Wong DH; Tam A; Ashby MN; Michaelis S; Young SG
    J Biol Chem; 2001 Aug; 276(31):29051-8. PubMed ID: 11399759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CaaX proteases, Afc1p and Rce1p, have overlapping but distinct substrate specificities.
    Trueblood CE; Boyartchuk VL; Picologlou EA; Rozema D; Poulter CD; Rine J
    Mol Cell Biol; 2000 Jun; 20(12):4381-92. PubMed ID: 10825201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast as a tractable genetic system for functional studies of the insulin-degrading enzyme.
    Kim S; Lapham AN; Freedman CG; Reed TL; Schmidt WK
    J Biol Chem; 2005 Jul; 280(30):27481-90. PubMed ID: 15944156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology of the yeast Ras converting enzyme as inferred from cysteine accessibility studies.
    Hildebrandt ER; Davis DM; Deaton J; Krishnankutty RK; Lilla E; Schmidt WK
    Biochemistry; 2013 Sep; 52(38):6601-14. PubMed ID: 23972033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing.
    Tam A; Nouvet FJ; Fujimura-Kamada K; Slunt H; Sisodia SS; Michaelis S
    J Cell Biol; 1998 Aug; 142(3):635-49. PubMed ID: 9700155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical inhibition of CaaX protease activity disrupts yeast Ras localization.
    Manandhar SP; Hildebrandt ER; Jacobsen WH; Santangelo GM; Schmidt WK
    Yeast; 2010 Jun; 27(6):327-43. PubMed ID: 20162532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification, functional expression and enzymic analysis of two distinct CaaX proteases from Caenorhabditis elegans.
    Cadiñanos J; Schmidt WK; Fueyo A; Varela I; López-Otín C; Freije JM
    Biochem J; 2003 Mar; 370(Pt 3):1047-54. PubMed ID: 12487630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage.
    Schmidt WK; Tam A; Fujimura-Kamada K; Michaelis S
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11175-80. PubMed ID: 9736709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae a-factor mutants reveal residues critical for processing, activity, and export.
    Huyer G; Kistler A; Nouvet FJ; George CM; Boyle ML; Michaelis S
    Eukaryot Cell; 2006 Sep; 5(9):1560-70. PubMed ID: 16963638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multispanning membrane protein Ste24p catalyzes CAAX proteolysis and NH2-terminal processing of the yeast a-factor precursor.
    Tam A; Schmidt WK; Michaelis S
    J Biol Chem; 2001 Dec; 276(50):46798-806. PubMed ID: 11581258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the CaaX proteases Rce1p and Ste24p by peptidyl (acyloxy)methyl ketones.
    Porter SB; Hildebrandt ER; Breevoort SR; Mokry DZ; Dore TM; Schmidt WK
    Biochim Biophys Acta; 2007 Jun; 1773(6):853-62. PubMed ID: 17467817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes.
    Cadiñanos J; Varela I; Mandel DA; Schmidt WK; Díaz-Perales A; López-Otín C; Freije JM
    J Biol Chem; 2003 Oct; 278(43):42091-7. PubMed ID: 12928436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1.
    Manolaridis I; Kulkarni K; Dodd RB; Ogasawara S; Zhang Z; Bineva G; Reilly NO; Hanrahan SJ; Thompson AJ; Cronin N; Iwata S; Barford D
    Nature; 2013 Dec; 504(7479):301-5. PubMed ID: 24291792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of a mammalian prenyl protein-specific protease.
    Otto JC; Kim E; Young SG; Casey PJ
    J Biol Chem; 1999 Mar; 274(13):8379-82. PubMed ID: 10085068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaaX converting enzymes.
    Ashby MN
    Curr Opin Lipidol; 1998 Apr; 9(2):99-102. PubMed ID: 9559265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the inhibitor properties of dipeptidyl (acyloxy)methyl ketones toward the CaaX proteases.
    Dechert AM; MacNamara JP; Breevoort SR; Hildebrandt ER; Hembree NW; Rea AC; McLain DE; Porter SB; Schmidt WK; Dore TM
    Bioorg Med Chem; 2010 Sep; 18(17):6230-7. PubMed ID: 20696584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.