These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16362171)

  • 1. In vivo variability in quantitative coronary ultrasound and tissue characterization measurements with mechanical and phased-array catheters.
    Rodriguez-Granillo GA; McFadden EP; Aoki J; van Mieghem CA; Regar E; Bruining N; Serruys PW
    Int J Cardiovasc Imaging; 2006 Feb; 22(1):47-53. PubMed ID: 16362171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility of intravascular ultrasound radiofrequency data analysis: implications for the design of longitudinal studies.
    Rodriguez-Granillo GA; Vaina S; García-García HM; Valgimigli M; Duckers E; van Geuns RJ; Regar E; van der Giessen WJ; Bressers M; Goedhart D; Morel MA; de Feyter PJ; Serruys PW
    Int J Cardiovasc Imaging; 2006 Oct; 22(5):621-31. PubMed ID: 16575482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary vessel and luminal area measurement using dual-source computed tomography in comparison with intravascular ultrasound: effect of window settings on measurement accuracy.
    Marwan M; Pflederer T; Schepis T; Seltmann M; Ropers D; Daniel WG; Achenbach S
    J Comput Assist Tomogr; 2011; 35(1):113-8. PubMed ID: 21245696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometrical validation of intravascular ultrasound radiofrequency data analysis (Virtual Histology) acquired with a 30 MHz boston scientific corporation imaging catheter.
    Rodriguez-Granillo GA; Bruining N; Mc Fadden E; Ligthart JM; Aoki J; Regar E; de Feyter P; Serruys PW
    Catheter Cardiovasc Interv; 2005 Dec; 66(4):514-8. PubMed ID: 16281299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of coronary artery remodelling by dual-source CT: a head-to-head comparison with intravascular ultrasound.
    Gauss S; Achenbach S; Pflederer T; Schuhbäck A; Daniel WG; Marwan M
    Heart; 2011 Jun; 97(12):991-7. PubMed ID: 21478387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of intravascular ultrasound iMAP for radiofrequency data analysis: implications for design of longitudinal studies.
    Heo JH; Brugaletta S; Garcia-Garcia HM; Gomez-Lara J; Ligthart JM; Witberg K; Magro M; Shin ES; Serruys PW
    Catheter Cardiovasc Interv; 2014 Jun; 83(7):E233-42. PubMed ID: 22109902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study.
    Voros S; Rinehart S; Qian Z; Vazquez G; Anderson H; Murrieta L; Wilmer C; Carlson H; Taylor K; Ballard W; Karmpaliotis D; Kalynych A; Brown C
    JACC Cardiovasc Interv; 2011 Feb; 4(2):198-208. PubMed ID: 21349459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjustment method for mechanical Boston scientific corporation 30 MHz intravascular ultrasound catheters connected to a Clearview console. Mechanical 30 MHz IVUS catheter adjustment.
    Bruining N; Hamers R; Teo TJ; de Feijter PJ; Serruys PW; Roelandt JR
    Int J Cardiovasc Imaging; 2004 Apr; 20(2):83-91. PubMed ID: 15068137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of early atherosclerosis in de novo heart transplant recipients: analysis with intravascular ultrasound-derived radiofrequency analysis.
    König A; Kilian E; Rieber J; Schiele TM; Leibig M; Sohn HY; Reichart B; Klauss V
    J Heart Lung Transplant; 2008 Jan; 27(1):26-30. PubMed ID: 18187083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CT Attenuation of Pericoronary Adipose Tissue in Normal Versus Atherosclerotic Coronary Segments as Defined by Intravascular Ultrasound.
    Marwan M; Hell M; Schuhbäck A; Gauss S; Bittner D; Pflederer T; Achenbach S
    J Comput Assist Tomogr; 2017; 41(5):762-767. PubMed ID: 28914752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Intravascular Ultrasound Catheter-Based Transducers Using the Resolution Integral.
    McLeod C; Moran CM; McBride KA; Pye SD
    Ultrasound Med Biol; 2018 Dec; 44(12):2802-2812. PubMed ID: 30146091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of quantitative measurements between two different intravascular ultrasound systems: in vitro and in vivo studies.
    Yamada R; Okura H; Kume T; Hayashida A; Neishi Y; Kawamoto T; Yoshida K
    J Cardiol; 2013 Mar; 61(3):201-5. PubMed ID: 23265676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo comparison of three different intravascular ultrasound catheter designs.
    Fort S; Freeman NA; Johnston P; Cohen EA; Foster FS
    Catheter Cardiovasc Interv; 2001 Mar; 52(3):382-92. PubMed ID: 11246258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison between 40 MHz intravascular ultrasound iMap imaging system and integrated backscatter intravascular ultrasound.
    Yamada R; Okura H; Kume T; Neishi Y; Kawamoto T; Miyamoto Y; Imai K; Saito K; Hayashida A; Yoshida K
    J Cardiol; 2013 Feb; 61(2):149-54. PubMed ID: 23265675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of spotty calcification on long-term prediction of future revascularization: a prospective three-vessel intravascular ultrasound study.
    Tamaru H; Fujii K; Fukunaga M; Imanaka T; Miki K; Horimatsu T; Nishimura M; Saita T; Sumiyoshi A; Shibuya M; Naito Y; Masuyama T
    Heart Vessels; 2016 Jun; 31(6):881-9. PubMed ID: 25964072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of coronary artery disease risk factors on intravascular ultrasound-derived morphologic indices of human coronaries.
    Kahlon JP; Torey J; Nordstrom CK; LaLonde TA; Ali A; Schreiber TL; Ogawa T; Maciejko JJ; Rosman H; Gardin JM
    Echocardiography; 2006 Apr; 23(4):308-11. PubMed ID: 16640708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS.
    Miyamoto Y; Okura H; Kume T; Kawamoto T; Neishi Y; Hayashida A; Yamada R; Imai K; Saito K; Yoshida K
    JACC Cardiovasc Imaging; 2011 Jun; 4(6):638-46. PubMed ID: 21679899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved automated lumen contour detection by novel multifrequency processing algorithm with current intravascular ultrasound system.
    Kume T; Kim BK; Waseda K; Sathyanarayana S; Li W; Teo TJ; Yock PG; Fitzgerald PJ; Honda Y
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):E173-7. PubMed ID: 21805600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of mechanical and phased-array designs for serial intravascular ultrasound examinations--animal and clinical studies in stented and non-stented coronary arteries.
    Tardif JC; Bertrand OF; Mongrain R; Lespérance J; Grégoire J; Paiement P; Bonan R
    Int J Card Imaging; 2000 Oct; 16(5):365-75. PubMed ID: 11215921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical validation of a novel software for quantitative analysis of coronary intravascular ultrasound.
    Nijhoff F; Van Den Hengel KG; Slots TL; Stella PR; Agostoni P
    Cardiovasc Revasc Med; 2014; 15(8):393-401. PubMed ID: 25456415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.