These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16362304)

  • 21. Binaural interaction in the frog dorsal medullary nucleus.
    Christensen-Dalsgaard J; Kanneworff M
    Brain Res Bull; 2005 Sep; 66(4-6):522-5. PubMed ID: 16144642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective phonotaxis to advertisement calls in the grey treefrog Hyla versicolor: behavioral experiments and neurophysiological correlates.
    Diekamp B; Gerhardt HC
    J Comp Physiol A; 1995; 177(2):173-90. PubMed ID: 7636766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature coupling in cricket acoustic communication. I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus.
    Pires A; Hoy RR
    J Comp Physiol A; 1992 Aug; 171(1):69-78. PubMed ID: 1403992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel acoustic-vibratory multimodal duet.
    Rajaraman K; Godthi V; Pratap R; Balakrishnan R
    J Exp Biol; 2015 Oct; 218(Pt 19):3042-50. PubMed ID: 26254322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hearing asymmetry and auditory acuity in the Australian bushcricket Requena verticalis (Listroscelidinae; Tettigoniidae; Orthoptera).
    Bailey WJ; Yang S
    J Exp Biol; 2002 Sep; 205(Pt 18):2935-42. PubMed ID: 12177158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonotaxis in Hyla versicolor (Anura, Hylidae): the effect of absolute call amplitude.
    Beckers OM; Schul J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):869-76. PubMed ID: 15316730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Out of phase: relevance of the medial septum for directional hearing and phonotaxis in the natural habitat of field crickets.
    Hirtenlehner S; Römer H; Schmidt AK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Feb; 200(2):139-48. PubMed ID: 24281354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensory habituation of auditory receptor neurons: implications for sound localization.
    Givois V; Pollack GS
    J Exp Biol; 2000 Sep; 203(Pt 17):2529-37. PubMed ID: 10933997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system.
    Hedwig B; Poulet JF
    J Exp Biol; 2005 Mar; 208(Pt 5):915-27. PubMed ID: 15755890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic detachable headphones for acoustic stimulation in freely moving animals.
    Nodal FR; Keating P; King AJ
    J Neurosci Methods; 2010 May; 189(1):44-50. PubMed ID: 20346981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A shot in the dark: the silent quest of a free-flying phonotactic fly.
    Müller P; Robert D
    J Exp Biol; 2001 Mar; 204(Pt 6):1039-52. PubMed ID: 11222123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phonotactic walking paths of field crickets in closed-loop conditions and their simulation using a stochastic model.
    Mhatre N; Balakrishnan R
    J Exp Biol; 2007 Oct; 210(Pt 20):3661-76. PubMed ID: 17921167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature coupling in cricket acoustic communication. II. Localization of temperature effects on song production and recognition networks in Gryllus firmus.
    Pires A; Hoy RR
    J Comp Physiol A; 1992 Aug; 171(1):79-92. PubMed ID: 1403993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A corollary discharge maintains auditory sensitivity during sound production.
    Poulet JF; Hedwig B
    Nature; 2002 Aug; 418(6900):872-6. PubMed ID: 12192409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High background noise shapes selective auditory filters in a tropical cricket.
    Schmidt AK; Riede K; Römer H
    J Exp Biol; 2011 May; 214(Pt 10):1754-62. PubMed ID: 21525323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of fixed time versus intensity trade and fixed intensity versus time trade tests in sound lateralization.
    Dekio-Hotta S; Kaga K
    Auris Nasus Larynx; 2006 Sep; 33(3):265-9. PubMed ID: 16431062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Previous flight facilitates partner finding in female crickets.
    Mezheritskiy M; Vorontsov D; Lapshin D; Dyakonova V
    Sci Rep; 2020 Dec; 10(1):22328. PubMed ID: 33339880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos.
    Tunstall DN; Pollack GS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):363-72. PubMed ID: 15668779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory cues for sound localization in the cricket Teleogryllus oceanicus: interaural difference in response strength versus interaural latency difference.
    Pollack GS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):143-51. PubMed ID: 12607043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.